Каждую сторону ромба можно уменьшить на любое число положительное "a" получившийся меньший ромб все равно будет подобен исходному, но если нам необходимо сохранить пропорции сторон и площади ромбов, а n это цело число то каждую сторону ромба будем уменьшать на четное количество раз, таким образом например: если исходный ромб имеет сторону 8 то его Р= 32, уменьшим каждую сторону вдвое и получим ромб со стороной 4 тогда площадь этого ПОДОБНОГО ромба будет 16, что соответствует целому параметру n и т.д.
Перед нами квадратное неравенство 2х² + х -6 ≤ 0.
Для начала решим квадратное уравнение 2х² + х -6
Решаем квадратное уравнение
x 1 = -2
x 2 = 1.5
Интервалы знакопостоянства
Определяем интервалы, на которых функция не меняет знак - интервалы знакопостоянства.
( -∞ , -2) ( -2 , 1.5) ( 1.5 , +∞)
Определяем, какой знак принимает функция на каждом интервале.
( -∞ , -2) плюс
( -2 , 1.5) минус
( 1.5 , +∞) плюс
Записываем интервалы, удовлетворяющие неравенству.
( -2 , 1.5)
Проверяем входят ли концы интервалов в ответ.
[-2 , 1.5]
ФИНАЛЬНЫЙ ОТВЕТ:
x принадлежит интервалу [-2 , 1.5]
А нам в ответ нужно записать ТОЛЬКО ЦЕЛЫЕ ЧИСЛА
ответ: -2; -1; 0; 1.
например: если исходный ромб имеет сторону 8 то его Р= 32, уменьшим каждую сторону вдвое и получим ромб со стороной 4 тогда площадь этого ПОДОБНОГО ромба будет 16, что соответствует целому параметру n и т.д.