Объяснение: Пускай a, b, c, d - коэффициенты. Тогда:
Система из 4 линейных уравнений с 4 неизвестными - решение можно найти и оно только одно. Решаем систему либо методом Гаусса, либо методом обратной матрицы, либо другими известными. Вот пример через Гаусса:
Если у трехзначного числа на первом месте стоит цифра 3, то две другие цифры – произвольные, отличные от 3. Значит, на втором месте может стоять любая из 9 других цифр, и на третьем – любая из 9 других цифр – всего 9х9 = 81 вариант. Если тройка стоит на втором месте, то на первом месте может стоять любая цифра, кроме 3 и 0, а на последнем – любая, кроме тройки. Всего получается 8х9 = 72 варианта. Столько же вариантов мы получим, если тройка будет стоять на последнем месте. Итого: 81 + 72 + 72 = 225 вариантов.
ответ: x^3 + 2*x^2 + 4*x + 8
Объяснение: Пускай a, b, c, d - коэффициенты. Тогда:
Система из 4 линейных уравнений с 4 неизвестными - решение можно найти и оно только одно. Решаем систему либо методом Гаусса, либо методом обратной матрицы, либо другими известными. Вот пример через Гаусса:
a+b+c+d = 15 => d = 15-a-b-c
-a+b-c+d = 5 => -a+b-c+15-a-b-c = 5 => -2a-2c= -10 => c = 5-a
8a+4b+2c+d=32 => 8a+4b+10-2a+15-a-b-5+a=32 => 6a+3b=12 => b = 4-2a
-27a+9b-3c+d=-13 => -27a +36-18a-15+3a+15-a-4+2a-5+a=-13 => -40a = -40 => a = 1
Из этого находим другие коэффициенты.