Число 25 нужно разбить на 3 слагаемых, используя цифры от 0 до 9.
Единственная подходящая комбинация: 9+9+7=25.
Из 3-х цифр: 9, 9, 7 можно составить 3 трехзначных числа:
997
799
979
Нужно проверить, какое из этих чисел делится на 11.
Правило делимости на 11: число делится на 11, когда знакочередующаяся сумма его цифр делится на 11.
997 => 9+(-9)+7=7, 7 не делится на 11. значит 997 не делится на 11.
799 => 7+(-9)+9=7, 799 не делится на 11.
979 => 9+(-7)+9=9+9-7=18-7=11; 11/11=1 - 979 делится на 11.
ответ: средняя цифра 7
[3;5].
Объяснение:
1) ⁴√(x-3)⁴ = lx-3l;
⁶√(5-x)⁶ = l5-xl, тогда
⁴√(x-3)⁴+⁶√(5-x)⁶= 2
lx-3l + l5-xl =2
2) Найдём нули подмодульных выражений:
х-3 = 0, х=3;
5-х = 0, х=5.
✓ если x∈ (-∞;3] , то lх-3l = -x+3; l5-xl = 5-x;
-x+3+5-x=2
-2x=2-8
-2x=-6
x=3
3 является корнем уравнения.
✓ если x∈ (3 ;5), то lх-3l = x-3; l5-xl = 5-x;
x-3+5-x=2
0•x=0
Любое число из промежутка (3 ;5) является корнем.
✓ если x∈ [5 ; +∞), то lх-3l = x-3; l5-xl = -5+x;
x-3-5+x=2
2x=2+8
2х = 10
х =5
5 является корнем уравнения.
Объединяя полученные решения, получим:
{3}∪(3;5)∪{5} = [3;5].
Число 25 нужно разбить на 3 слагаемых, используя цифры от 0 до 9.
Единственная подходящая комбинация: 9+9+7=25.
Из 3-х цифр: 9, 9, 7 можно составить 3 трехзначных числа:
997
799
979
Нужно проверить, какое из этих чисел делится на 11.
Правило делимости на 11: число делится на 11, когда знакочередующаяся сумма его цифр делится на 11.
997 => 9+(-9)+7=7, 7 не делится на 11. значит 997 не делится на 11.
799 => 7+(-9)+9=7, 799 не делится на 11.
979 => 9+(-7)+9=9+9-7=18-7=11; 11/11=1 - 979 делится на 11.
ответ: средняя цифра 7
[3;5].
Объяснение:
1) ⁴√(x-3)⁴ = lx-3l;
⁶√(5-x)⁶ = l5-xl, тогда
⁴√(x-3)⁴+⁶√(5-x)⁶= 2
lx-3l + l5-xl =2
2) Найдём нули подмодульных выражений:
х-3 = 0, х=3;
5-х = 0, х=5.
✓ если x∈ (-∞;3] , то lх-3l = -x+3; l5-xl = 5-x;
-x+3+5-x=2
-2x=2-8
-2x=-6
x=3
3 является корнем уравнения.
✓ если x∈ (3 ;5), то lх-3l = x-3; l5-xl = 5-x;
x-3+5-x=2
0•x=0
Любое число из промежутка (3 ;5) является корнем.
✓ если x∈ [5 ; +∞), то lх-3l = x-3; l5-xl = -5+x;
x-3-5+x=2
2x=2+8
2х = 10
х =5
5 является корнем уравнения.
Объединяя полученные решения, получим:
{3}∪(3;5)∪{5} = [3;5].