Для простоты решения обозначим ВД=х, АД=у, ДС=z . Тогда АВ=2х . Высота прямоуг. треуг., опущенная из прямого угла есть среднее пропорциональное между проекциями катетов на гипотенузу, то есть ВД ² = АД*ДС ---> x²=yz Из ΔАВД: у²=(2х)²-х²=3х² ---> y=x√3 Катет есть среднее пропорциональное между его проекцией на гипотенузу и самой гипотенузой , то есть АВ ²=АС*АД ---> (2x)²=(y+z)y=(x√3+z)x√3=3x²+xz√3 4x²-3x²=xz√3 ---> x²=xz√3 ---> z=x²:(x√3)=x:√3
Доказать, что — прямая пропорциональность. ---------- От нас требуется доказать, что — прямая пропорциональность, то есть доказать, что в выражении находится в первой степени (не , не , не и не , а просто ). Рассмотрим данное выражение . Если внимательно посмотреть это выражение можно видоизменить по формулам сокращенного умножения, а именно по формуле «разность квадратов». Действительно, данное выражение имеет вид , где , и . Формула «разность квадратов» раскрывается так: . Раскроем наше выражение по формуле:
Упростим: . Итак, получается, что , находится в первой степени, а значит зависимость — есть прямая пропорциональность. Доказано.
Тогда АВ=2х .
Высота прямоуг. треуг., опущенная из прямого угла есть среднее пропорциональное между проекциями катетов на гипотенузу, то есть
ВД ² = АД*ДС ---> x²=yz
Из ΔАВД: у²=(2х)²-х²=3х² ---> y=x√3
Катет есть среднее пропорциональное между его проекцией на гипотенузу и самой гипотенузой , то есть
АВ ²=АС*АД ---> (2x)²=(y+z)y=(x√3+z)x√3=3x²+xz√3
4x²-3x²=xz√3 ---> x²=xz√3 ---> z=x²:(x√3)=x:√3
3*AC=3(y+z)=3(x√3+x/√3)=3*(3x+x)/(√3)=4x*√3
4*AD=4y=4*x√3 --->
3*AC=4*AD
Доказать, что — прямая пропорциональность.
----------
От нас требуется доказать, что — прямая пропорциональность, то есть доказать, что в выражении находится в первой степени (не , не , не и не , а просто ).
Рассмотрим данное выражение . Если внимательно посмотреть это выражение можно видоизменить по формулам сокращенного умножения, а именно по формуле «разность квадратов». Действительно, данное выражение имеет вид , где , и . Формула «разность квадратов» раскрывается так: .
Раскроем наше выражение по формуле:
Упростим:
.
Итак, получается, что , находится в первой степени, а значит зависимость — есть прямая пропорциональность. Доказано.