с решением задачи на предел и непрерывность функции в точке Для каждой из функций, графики которых изображены на рисунке, установите: 1. определена ли эта функция в точке x0. 2. существует ли предел функции в точке x0; в случае утвердительного ответа запишите с использованием соответствующей символики, чему он равен. 3. если предел в точке x0 существует, то равен ли он значению функции в этой точке.
решается по формуле d=b²-4ac
a b c
3x²+x-30=0
D=1²-4·3· (-30)=1+360=361 , D больше 0 значит имеет 2 корня
x 1=-b+√D÷(2a) x2=-b-√D÷(2a)
∧ 2a в знаменатель ∧ 2a в знаменатель
x1= -1+√361÷(2·3) x2=-1-√361÷(2·3)
x1=-1+19 ÷6 x2= -1-19÷6
x1=18÷6 x2=-20÷6 ( сокращаем -20 и 6 )
x1=3 x2=-10÷3
ответ : x1=3 ; x2=-10÷3
y = -3
Yкас. = y(x0) + y'(x0)(x-x0)
Найдем x0.
2x-x^2 = -3
-x^2 + 2x + 3 = 0
x^2 - 2x - 3 = 0
a = 1, b= -2, c = -3
D=b^2 - 4ac = 4 + 4*1*3 = 4 + 12 = 16 = 4^2
x1 = (-b + корень из D) / 2a = (2 + 4)/2 = 3
x2 = (-b - корень из D) / 2a = (2 - 4)/2 = -1
Находим производную:
y' = (2x - x^2)' = 2 - 2x
Составляем уравнения касательных:
Yкас. = y(x0) + y'(x0)(x-x0)
y(x1) = 2*3 - 9 = 6-9 = -3
y(x2) = -2 -1 = -3
y'(x1) = 2 - 2*3 = 2 - 6 = -4
y'(x2) = 2+2 = 4
Yк1 = -3 + -4*(x-3) = -3 - 4x + 12 = 9 - 3x
Yк2 = -3 + 4*(x+1) = -3 + 4x + 4 = 1 + 4x