Пусть ВС=2а, угол АВС=30 градусам. Тогда 2a/AB=cos30 Отсюда находим АВ=4а/sqrt(3), тогда радиус окружности R=2a/sqrt(3) Заодно находим АС=2a/sqrt(3) Перейдем к нахождению высоты. Искомая грань SCB Проведем ОЕ перпендикулярно ВС (одновременно ОЕ параллельна АС и является средней линией и потому равна половине АС, ОЕ=a/sqrt(3)). По теореме о трех перпендику лярах SE тоже будет перпендикулярна ВС и потому линейный угол двугранного угла равен SEO=45/ Тогда SO=OE Высота найдена.Далее находим объем конуса по стандартной формуле.
4x² + 1 = 0 a = 4 | b = 0 | c = 1
D = b² - 4ac = 0 - 4 * 4 * 1 = 0 - 16 = -16 < 0, корней нет
2m² - 3m = 8 -3m
2m² - 3m - 8 + 3m = 0
2m² - 8 = 0 a = 2 | b = 0 | c = -8
D = b² - 4ac = 0 - 4 * 2 * (-8) = -64 < 0, нет корней
3x² - 4x = 0 a = 3 | b = -4 | c = 0
D = b² - 4ac = 16 - 4 * 3 * 0 = 16 > 0, 2 корня
x₁ = -b + √D/2a = 4 + 4/6 = 8/6 = 4/3
x₂ = -b - √D/2a = 4 - 4/6 = 0/6 = 0
4x² - 9 = 0 a = 4 | b = 0 | c = -9
D = b² - 4ac = 0 - 4 * 4 * (-9) = 144 > 0, 2 корня
x₁ = -b + √D/2a = 0 + 12/8 = 12/8 = 3/2 = 1,5
x₂ = -b - √D/2a = 0 - 12/8 = -12/8 = -3/2 = -1,5
отметь как лучший!
Пусть ВС=2а, угол АВС=30 градусам. Тогда 2a/AB=cos30 Отсюда находим АВ=4а/sqrt(3), тогда радиус окружности R=2a/sqrt(3) Заодно находим АС=2a/sqrt(3) Перейдем к нахождению высоты. Искомая грань SCB Проведем ОЕ перпендикулярно ВС (одновременно ОЕ параллельна АС и является средней линией и потому равна половине АС, ОЕ=a/sqrt(3)). По теореме о трех перпендику лярах SE тоже будет перпендикулярна ВС и потому линейный угол двугранного угла равен SEO=45/ Тогда SO=OE Высота найдена.Далее находим объем конуса по стандартной формуле.