группируем отдельно части со степенями, отдельно без них:
(m^2 - n^2) + (n - m)
"+" и "-", стоящие перед членами выражения, принадлежат тому, перед чем они стоят. Например минус перед "n^2" - это собственность "n^2", он никуда сам по себе не девается.
Теперь разложим (m^2 - n^2) по формуле сокращенного умножения:
(m^2 - n^2) + (n - m) = (m - n) (m + n) + (n - m)
Теперь вынесем за скобки -1 перед последним слагаемым (перед всем выражением в скобках - знаки в последних скобках поменяются на противоположные:
Начнем с того, что все простые числа, кроме числа 2, - нечетные.
Если среди чисел p и q нет числа 2, то они оба нечетные. Тогда, сумма двух нечетных чисел даст четное число, причем это четное число будет больше 2, так как наименьшие последовательные нечетные простые числа - это числа 3 и 5. Такое четное число не может быть простым. Значит, этот вариант не подходит.
Рассмотрим вариант, когда одно из двух рассматриваемых чисел равно 2. По условию, рассматриваются последовательные простые числа, значит другое число равно 3. Сумма этих чисел дает также простое число 5. Значит, сумма двух последовательных простых чисел может быть простым числом.
Объяснение:
1)m^2-n^2-m+n
группируем отдельно части со степенями, отдельно без них:
(m^2 - n^2) + (n - m)
"+" и "-", стоящие перед членами выражения, принадлежат тому, перед чем они стоят. Например минус перед "n^2" - это собственность "n^2", он никуда сам по себе не девается.
Теперь разложим (m^2 - n^2) по формуле сокращенного умножения:
(m^2 - n^2) + (n - m) = (m - n) (m + n) + (n - m)
Теперь вынесем за скобки -1 перед последним слагаемым (перед всем выражением в скобках - знаки в последних скобках поменяются на противоположные:
(m^2 - n^2) + (n - m) = (m - n) (m + n) + (n - m) = (m - n) (m + n) - 1 (m - n)
Теперь вынесем за скобки (m-n)
(m^2 - n^2) + (n - m) = (m - n) (m + n) + (n - m) = (m - n) (m + n) - 1 (m - n) = (m-n) (m+n+1).
2) c+d-c²+d² = c+d+ (d²- c²) = (c+d) + (d- c) (d + c) = (d+c) * (1+d-c)
3) 16х²-25y²-4x-5y = (4х-5у)(4х+5у)-(4х+5у) = (4х+5у) (4х-5у - 1)
4) 4)12a²b³+3a³b²+16b²-a² = 3а²b²(4b+a) + (4b-a)(4b+a) = (4b+a)* (3а²b²+4b-a)
Начнем с того, что все простые числа, кроме числа 2, - нечетные.
Если среди чисел p и q нет числа 2, то они оба нечетные. Тогда, сумма двух нечетных чисел даст четное число, причем это четное число будет больше 2, так как наименьшие последовательные нечетные простые числа - это числа 3 и 5. Такое четное число не может быть простым. Значит, этот вариант не подходит.
Рассмотрим вариант, когда одно из двух рассматриваемых чисел равно 2. По условию, рассматриваются последовательные простые числа, значит другое число равно 3. Сумма этих чисел дает также простое число 5. Значит, сумма двух последовательных простых чисел может быть простым числом.
ответ: да, может