Вероятность того, что в течение года перегорит не менее трёх ламп равна сумме вероятностей того, что перегорит 3 или 4 лампы. Вероятность того, что перегорит три лампы равна P(3)=0,8^3*0,2=0,1024 Вероятность того, что перегорит три лампы равна P(4)=0,8^4=0,4096 Вероятность того, что в течение года перегорит не менее трёх ламп равна : P(3,4)=0,1024+0,4096=0,512
Вероятность того, что перегорит не более трёх ламп равна разности единицы и вероятности того, что прегорят все четыре лампы. Вероятность того, что не перегорят все 4 лампы равна P(4)=0,8^4=0,4096 Вероятность того, что перегорит не более трёх ламп равна: P(0,1,2,3)=1-0,4096=0,5904
Таким образом, ширина прямоугольника = 3 см, его длина = 3+4 = 7 см.
В условиях задачи не указано, что именно нужно найти, но если периметр, то по формуле P = 2*(a+b) = 2*(3+7) = 20 см. Если площадь, то по формуле S = a*b = 3*7 = 21 см^2.
Вероятность того, что перегорит три лампы равна
P(3)=0,8^3*0,2=0,1024
Вероятность того, что перегорит три лампы равна
P(4)=0,8^4=0,4096
Вероятность того, что в течение года перегорит не менее трёх ламп равна :
P(3,4)=0,1024+0,4096=0,512
Вероятность того, что перегорит не более трёх ламп равна разности единицы и вероятности того, что прегорят все четыре лампы.
Вероятность того, что не перегорят все 4 лампы равна
P(4)=0,8^4=0,4096
Вероятность того, что перегорит не более трёх ламп равна:
P(0,1,2,3)=1-0,4096=0,5904
1) Возьмем ширину прямоугольника a за х см, тогда его длина b = х+4 см.
2) S' = a*b = х*(х+4)
3) Если ширину прямоугольника увеличить на 2 см, а длину увеличить на 6 см, то получим: S'' = (а+2)*(b+6) = (х+2)*(x+10) = х^2+10х+2х+20 = х^2+12х+20
4) S'' - S' = х^2 + 12х + 20 - х^2 - 4х = 8х+20 = 44, отсюда 8*х = 24, х = 24:8 = 3.
Таким образом, ширина прямоугольника = 3 см, его длина = 3+4 = 7 см.
В условиях задачи не указано, что именно нужно найти, но если периметр, то по формуле P = 2*(a+b) = 2*(3+7) = 20 см. Если площадь, то по формуле S = a*b = 3*7 = 21 см^2.