Пусть первое число х+1, тогда сумма 2015 последовательных чисел (x+1) + (x+2) + (x+3) + ... + (x+2015) = 2015x + (1+2+3+...+2015) = = 2015x + (1+2015)*2015/2 = 2015*(x + 2016/2) = 2015*(x+1008) Если х четное, то х+1008 тоже четное, и сумма кончается на 0. Если х нечетное, то х+1008 тоже нечетное, и сумма кончается на 5. Сумма следующих 2019 чисел (x+2015+1) + (x+2015+2) + (x+2015+3) + ... + (x+2015+2019) = = (x+2016) + (x+2017) + (x+2018) + ... + (x+4034) = = 2019*(x+2015) + (1+2+3+...+2019) = 2019*(x+2015) + (1+2019)*2019/2 = = 2019*(x+2015+2020/2) = 2019*(x+2015+1010) = 2019*(x+3025) Если x кончается 0 (четное), то это число кончается 5, а первое 0. Если x кончается 5 (нечетное), то это кончается 0, а первое 5. Если x кончается на любую другую цифру, то число кончается не 0 и не 5. Вывод: нет, не может.
Если работают оба крана, то вода из ванны вытекает (второй кран имеет большую производительность, но его работа - не наполнять, а опорожнять ванну). x - за столько минут первый кран наполняет ванну.x−4 - за столько минут второй кран опорожняет ванну. 1x - такую часть ванны наполняет первый кран за 1 минуту. 1x−4 - такую часть ванны опорожняет второй кран за 1 минуту. Обрати внимание!Из большей дроби вычитаем меньшую, меньше та дробь, у которой знаменатель больше. 1x−4−1x - такая часть ванны опорожняется за 1 минуту, если открыты оба крана.Так как за 35 минут опорожняется полная ванна (т.е. будет проделана вся работа), то получаем уравнение: 35(xx−4−35(x−4x=1(x⋅(x−4)1x≠0,x−4≠0a=1, b=−4, c=−150 D=b^2−4ac=(−4)2+4⋅1⋅150=625 Дальше находим х1,2
1x−4 - такую часть ванны опорожняет второй кран за 1 минуту. Обрати внимание!Из большей дроби вычитаем меньшую, меньше та дробь, у которой знаменатель больше.
1x−4−1x - такая часть ванны опорожняется за 1 минуту, если открыты оба крана.Так как за 35 минут опорожняется полная ванна (т.е. будет проделана вся работа), то получаем уравнение: 35(xx−4−35(x−4x=1(x⋅(x−4)1x≠0,x−4≠0a=1, b=−4, c=−150 D=b^2−4ac=(−4)2+4⋅1⋅150=625 Дальше находим х1,2