С таблиц истинности решите следующие логические задачи (в ответах к некоторым задачам может быть более одного логически допустимого случая). Коля пригласил свою сестру приехать к нему в гости. После этого он получил от нее три сообщения:
(1) Я поеду в гости, если только со мной поедет папа.
(2) Если меня будет сопровождать мама, то я приеду.
(3) Либо приедем мы с мамой, либо приедет только папа.
Из трех сообщений истинным оказалось только одно. Кто приехал навестить Колю?
1. а) - 4, 5
б) - 1, 2, 4, 5
в) - таких функций нет
2. А - 2
B - 3
C - 1
D - нет подходящего рисунка
3. а) - любые числа
б) x не равно 8, значит принадлежит (-бесконечность;8)U(8;+бесконечность)
4. y = 2.5x-1
т.к. функция линейная, нам нужно найти значение лишь при минимуме и максимуме отрезка -4≤x≤8
y = -4*2.5-1=-11
y=2.5*8-1=19
значит область значений принадлежит [-11;19]
5. точка пересечения: 1;5
Объяснение:
1) || - параллельнсть
l - переменная
k - коэффициент
функции ||, если они не могут быть равны, т.е. у них нет точек пересечения, согласно определению параллельности (|| те прямые, которые не имеют точек пересечения).
а если точка пересечения есть, тогда функции пересекаются, т.е. они оба пересекают определенную координату, следовательно они должны быть равны между собой
линейные функции :
тогда можно прийти к выводу, что если k1=k2, функции параллельны, ибо:
y=kx+l если представить как равно значение:
kx+l=kx+l
l=l, т.е. если k1=k2, l1=l2, проще говоря, не существует какой-либо функции, которая пересекает y=kx+l, если их k равны.
например, y=5x+2
5x+2=5x+2
2=2, если вместо 2 мы подставим любое другое число, равенство станет неверным.
из этого можно сделать вывод, что если k1 не равно k2, тогда функции пересекаются, ибо:
y=k1x + l и y=k2x+l
k1x + l = k2x+ l
l мы сможем сократить только при условии, что они равны, но тогда мы получим все равно верное равенство, просто тогда точкой пересечения будет (0; l), т.е. при x=0 функции станут равными, ибо при умножении k на 0 будет 0, останется только l=l
если же l1 не равно l2, тогда у нас выйдет уравнение с 2 переменными, а значит оно имеет бесконечное множество решений при любом х (если, конечно, x имеет смысл и нет всяких делений на 0 и т.д.), следовательно первая функция при любых значениях k и l будет иметь точку пересечения со второй функцией, если k второй функции не равен k первой функции
2) чтобы установить соответствие, нужно найти минимум 2 значения линейной функции и сравнить результат с графиком.
но чаще всего на рисунках графики будут сильно друг от друга отличаться, поэтому достаточно найти x = 0 и сравнить результат с каждым из рисунков
5) чтобы нарисовать график линейной функции, достаточно найти 2 ее значения (желательно брать максимально простые числа, например, при х 0 и 1), затем проводим линию между этими двумя точками, получив их точку пересечения.
в данном задании можно уравнения представить как линейные функции.
тогда их точка пересечения будет ответом.
В решении.
Объяснение:
1. Запишите, какое из данных ниже уравнений является полным квадратным. Решите неполное квадратное уравнение.
А) 7х+49=0;
В) 3х²+14х+11=0; полное квадратное уравнение.
С) 5х² -125=0. неполное квадратное уравнение.
5х² = 125
х² = 125/5
х² = 25
х = ±√25
х₁ = -5;
х₂ = 5.
2. Реши уравнение с вычисления дискриминанта:
5х²-14х+9=0.
D=b²-4ac =196 - 180 = 16 √D= 4
х₁=(-b-√D)/2a
х₁=(14 - 4)/10
х₁=10/10
х₁=1;
х₂=(-b+√D)/2a
х₂=(14 + 4)/10
х₂=18/10
х₂=1,8.
Проверка путём подстановки вычисленных значений х в уравнение показала, что данные решения удовлетворяют данному уравнению.
3. Составьте квадратное уравнение, корни которого равны: 3 и -5.
(х - 3)*(х + 5) = х² + 5х - 3х - 15 = х² + 2х - 15.
4. Разложите на множители квадратный трехчлен: 2х²+15х+13.
2х²+15х+13 = 0
D=b²-4ac =225 - 104=121 √D= 11
х₁=(-b-√D)/2a
х₁=(-15 - 11)/4
х₁= -26/4
х₁= - 6,5;
х₂=(-b+√D)/2a
х₂=(-15 + 11)/4
х₂= -4/4
х₂= -1.
2х²+15х+13 =2*(х + 6,5)*(х + 1)