1) точки пересечения
x^3=x
x^3-x=0
x(x^2-1)=0
x=0
x^2=1 x=-1 x=1
так как эти точки принадлежат прямой у=х то в них у=х
то есть (-1,1) (0,0) (1,1)
2) рассмотрим интервалы x<-1 -1<x<0 0<x<1 x>1
если х будет > х^3 значит прямая будет выше
2.1) x<-1 возьмем х из этого интервала например х=-2
x^3=-8
x>x^3 значит на этом интервале прямая выше
2.2) -1<x<0 например х=-0,5
x^3=-0,125 x<x^3 прямая ниже
2.3) 0<x<1 например х=0,5
x^3=0,125 x>x^3 прямая выше
2.4) x>1 например х=2
x^3=8 x<x^3 прямая выше
таким образом
прямая выше при x<-1 и при 0<x<1
Объяснение:
1) 24/35 : 9/49 = 24/35 * 49/9(сокращаем) = 8/5 * 7/3(умножаем) = 56/15(выделяем целую часть) = 3 11/15
2) 3 11/15 - 2 3/5(делаем неправильную дробь) = 56/15 - 13/5(приводим к общему знаменателю) = 56 - 39/15 = 17/15 = 1 2/15
2.
1) 15,3 : 1 1/2(переводим 15,3 в дробь) = 153/10 : 3/2 = 153/10 * 2/3(сокращаем) = 51/5 = 10,2
2) -7,5 + 10,2 = 2,7
3.
1) 7/18 + 3 2/13 = 7/18 + 41/13(приводим к общему знаменателю) = 91 + 738/234(сокращаем) = 48
2) -2 11/13 - 48 = -37/13 - 48/1 = -37 - 624/13 = -37 - 48 = -85
3) -85 - 11/18 = -85/1 - 11/18 = -1530 - 11/18 = -85 - 11 = -96
Вроде все правильно
1) точки пересечения
x^3=x
x^3-x=0
x(x^2-1)=0
x=0
x^2=1 x=-1 x=1
так как эти точки принадлежат прямой у=х то в них у=х
то есть (-1,1) (0,0) (1,1)
2) рассмотрим интервалы x<-1 -1<x<0 0<x<1 x>1
если х будет > х^3 значит прямая будет выше
2.1) x<-1 возьмем х из этого интервала например х=-2
x^3=-8
x>x^3 значит на этом интервале прямая выше
2.2) -1<x<0 например х=-0,5
x^3=-0,125 x<x^3 прямая ниже
2.3) 0<x<1 например х=0,5
x^3=0,125 x>x^3 прямая выше
2.4) x>1 например х=2
x^3=8 x<x^3 прямая выше
таким образом
прямая выше при x<-1 и при 0<x<1
Объяснение: