Если за 3 ч первый автомобиль расстояние на 30 км больше, чем второй, то за 1час он расстояние на 10 км больше, чем второй. Это означает, что скорость первого автомобиля на 10км/ч больше скорости второго x- скорость второго автомобиля x+10 - скорость первого автомобиля 360/x - время на весь путь второго автомобиля 360/(x+10) - время на весь путь первого автомобиля 360/x-360/(x+10)=1/2⇒ 360(x+10-x)*2=x(x+10)⇒ x^2+10x-7200=0 D/4==5^2+7200=7225; √D/4=85 x1=-5+85=80 x2=-5-85=-90<0 - не подходит x=80 - скорость второго автомобиля 80+10=90 - скорость первого автомобиля
Это означает, что скорость первого автомобиля на 10км/ч больше скорости второго
x- скорость второго автомобиля
x+10 - скорость первого автомобиля
360/x - время на весь путь второго автомобиля
360/(x+10) - время на весь путь первого автомобиля
360/x-360/(x+10)=1/2⇒
360(x+10-x)*2=x(x+10)⇒
x^2+10x-7200=0
D/4==5^2+7200=7225; √D/4=85
x1=-5+85=80
x2=-5-85=-90<0 - не подходит
x=80 - скорость второго автомобиля
80+10=90 - скорость первого автомобиля
х³-3х²+(а+2)х-2а=0
х³-3х²+ах+2х-2а=0
х(х²-3х+2)+а(х-2)=0
х((х-2)(х-1))+а(х-2)=0
(х-2)(х(х-1)+а)=0
(х-2)(х²-х+а)=0
1) х-2=0 => х=2
Если уравнение должно иметь 2 противоположных корня, то второй множитель должен иметь один из корней, равный -2:
х²-х+а=0
(х+2)(х-3)=0
х²-х+6=0
Уравнение имеет 3 корня: х=2; х=-2; х=3.
Подставим все значения Х в уравнение:
1) х³-3х²+(а+2)х-2а=0
2³-3×2²+(а+2)×2-2а=0
8-12+2а+4-2а=0
0=0
2) х³-3х²+(а+2)х-2а=0
(-2)³-3×(-2)²+(а+2)×(-2)-2а=0
-8-12-2а-4-2а=0
-4а-24=0
а=-6
3) х³-3х²+(а+2)х-2а=0
3³-3×3²+(а+2)×3-2а=0
27-27+3а+6-2а=0
а=-6
ответ: а=-6