ответ: h1=h5=5/3м = 1 2/3 м
h2=h4=8/3м= 2 2/3 м
Объяснение:
Учитывая , что OB - ось симметрии параболы , то в качестве начала координат выберет точку O . Тогда AC лежит на оси x , а OB лежит на оси y. Поскольку вершина лежит на оси y , то парабола имеет вид:
y=a*x^2 +b
Коэффициент b соответствует вершине параболы
b=OB= 3м
Длинны отрезков OA=OC=12/2=6 соответствуют положительному корню параболы :
a* 6^2+3=0
a= -3/36= -1/12
Таким образом парабола имеет вид:
y= 3 - x^2/12
Найдём высоты столбов
Нумерацию столбов будем считать слева направо.
h1=h5=y(+-4м)=3 -16/12 = 3-4/3= 5/3 м
h2=h4=y(+-2м)=3 -4/12= 3-1/3= 8/3 м
m=16,4 - при данном значении m прямые пересекаются в одной точке.
Сначала выясним, точку пересечения двух первых прямых:
3х+1,2=2х+5
3х-2х=5-1,2
х=3,8 . Теперь надо найти ординату этой точки
у=2х+5
у=2*3,8+5
у=12,6.
Значит (3,8; 12,6) - точка пересечения двух первых прямых.
Так как все три прямые должны проходить через вышеуказанную точку, то третья точка тоже проходит через эту точку.
Теперь подставим эту точку в третью прямую
12,6=-3,8+m
m=12,6+3,8
ответ: h1=h5=5/3м = 1 2/3 м
h2=h4=8/3м= 2 2/3 м
Объяснение:
Учитывая , что OB - ось симметрии параболы , то в качестве начала координат выберет точку O . Тогда AC лежит на оси x , а OB лежит на оси y. Поскольку вершина лежит на оси y , то парабола имеет вид:
y=a*x^2 +b
Коэффициент b соответствует вершине параболы
b=OB= 3м
Длинны отрезков OA=OC=12/2=6 соответствуют положительному корню параболы :
a* 6^2+3=0
a= -3/36= -1/12
Таким образом парабола имеет вид:
y= 3 - x^2/12
Найдём высоты столбов
Нумерацию столбов будем считать слева направо.
h1=h5=y(+-4м)=3 -16/12 = 3-4/3= 5/3 м
h2=h4=y(+-2м)=3 -4/12= 3-1/3= 8/3 м
m=16,4 - при данном значении m прямые пересекаются в одной точке.
Объяснение:
Сначала выясним, точку пересечения двух первых прямых:
3х+1,2=2х+5
3х-2х=5-1,2
х=3,8 . Теперь надо найти ординату этой точки
у=2х+5
у=2*3,8+5
у=12,6.
Значит (3,8; 12,6) - точка пересечения двух первых прямых.
Так как все три прямые должны проходить через вышеуказанную точку, то третья точка тоже проходит через эту точку.
Теперь подставим эту точку в третью прямую
12,6=-3,8+m
m=12,6+3,8
m=16,4 - при данном значении m прямые пересекаются в одной точке.