х км/ч - скорость пешехода
у км/ч - скорость велосипедиста
50 мин + 10 мин = 60 мин = 1 час - время, за которое пешеход расстояние от поселка до места встречи.
10 мин = 1/6 часа - время, которое понадобилось велосипедисту , чтобы преодолеть это же расстояние от поселка до места встречи.
Первое уравнение:
1 · х = · у
Умножим обе части на 6 и получим:
6x = y
полчаса = 0,5 часа
По условию 4x > 0,5y на 3 км.
Второе уравнение:
4x - 0,5y = 3
Во второе уравнение подставим у=6х и решим относительно х.
4х - 0,5·6х = 3
4х - 3х = 3
х = 3 км/ч - скорость пешехода
6 · 3 = 18 км/ч - скорость велосипедиста.
ответ: 3 км/ч;
18 км/ч
Объяснение:
1) Підставляємо замість х 12 (бо це абсцисса) у формулу
12^2 + y^2 = 169
y^2 = 169-12^2
y^2 = 13^2-12^2
y^2 = (13-12)(13+12)
у^2=25
у1= -5
у2=5
Отже, точки (12;-5) і (12; 5)
2)Аналогічно замість у підставимо -5
x^2 + (-5)^2 = 169
x^2 + 25= 169
x^2 = 169-25
х^2=144
х1=12
х2= -12
Отже, точки (12; -5) і (-12; -5)
3)На осі абсцисс лежать ті точки, що мають у=0
Тож, необхідно підставити на місце у нуль
x^2 + 0^2 = 169
х^2=169
х1= -13
х2=13
Отже, точки (-13,0) та (13;0)
4) Якщо точка лежить на осі ординат, то її абсцисса дорівнює нулю
у^2=169
у1= -13
у2=13
Отже, відповідь: (0;-13) і (0;13)
х км/ч - скорость пешехода
у км/ч - скорость велосипедиста
50 мин + 10 мин = 60 мин = 1 час - время, за которое пешеход расстояние от поселка до места встречи.
10 мин = 1/6 часа - время, которое понадобилось велосипедисту , чтобы преодолеть это же расстояние от поселка до места встречи.
Первое уравнение:
1 · х = · у
Умножим обе части на 6 и получим:
6x = y
полчаса = 0,5 часа
По условию 4x > 0,5y на 3 км.
Второе уравнение:
4x - 0,5y = 3
Во второе уравнение подставим у=6х и решим относительно х.
4х - 0,5·6х = 3
4х - 3х = 3
х = 3 км/ч - скорость пешехода
6 · 3 = 18 км/ч - скорость велосипедиста.
ответ: 3 км/ч;
18 км/ч
Объяснение:
1) Підставляємо замість х 12 (бо це абсцисса) у формулу
12^2 + y^2 = 169
y^2 = 169-12^2
y^2 = 13^2-12^2
y^2 = (13-12)(13+12)
у^2=25
у1= -5
у2=5
Отже, точки (12;-5) і (12; 5)
2)Аналогічно замість у підставимо -5
x^2 + (-5)^2 = 169
x^2 + 25= 169
x^2 = 169-25
х^2=144
х1=12
х2= -12
Отже, точки (12; -5) і (-12; -5)
3)На осі абсцисс лежать ті точки, що мають у=0
Тож, необхідно підставити на місце у нуль
x^2 + 0^2 = 169
х^2=169
х1= -13
х2=13
Отже, точки (-13,0) та (13;0)
4) Якщо точка лежить на осі ординат, то її абсцисса дорівнює нулю
у^2=169
у1= -13
у2=13
Отже, відповідь: (0;-13) і (0;13)