с вопросами по производным! 1) Вычислите значение производной функции f в данной точке, если f(x)=2х ∙ cosx; x0=0. 2) Найдите значения х, при которых производная функции f равна нулю, если f(x)=2 x4-16х3. 3) Найдите область определения функции f(х) = . 4) Точка движется прямолинейно по закону х (t) = 6t3+2t-3. Найдите скорость в момент времени t= 2 с. 5) Найдите промежутки возрастания функции f(х) = 7х2-8х+3 6) Найдите промежутки убывания функции f(х) = 4+16х-х.
X⁴-15x²-16=0 через замену у=х² получаем уравнение у²-15х - 64=0 находим d=b²-4ac=15²-4*1*(-16)=225+64=289 ⇒√d=17 находим у₁=(15-17): 2=-1 у₂=(15+17): 2= 16 вернёмся к замене х²= -1 уравнение решений не имеет х²=16 , следовательно х₁=4 и х₂= -4 2. рациональное уравнение : к общему знаменателю(3+х)(3-х) и найдём дополнительные множители к слагаемым. получаем уравнение (3х+1)(3-х)+х(3+х)=18 раскроим скобки 9х-3х²+3-х+3х+х²-18=0 -2х²+11х-15=0 домножим всё на (-1) 2х²-11х+15=0 найдём d=121-2*4*15=1 находим корни х₁=(11+1): 2=6 и х₂= (11-1): 2=5 оба корня знаменатель не обращают в 0 значит ответ 6 и 5
1) Номер не может начинаться с 0.
Значит, на 1 месте любая из 6 цифр, кроме 0 (6 вариантов).
На 2 месте любая из 6 оставшихся, в том числе и 0 (6 вариантов).
На 3 месте любая из 5, потом любая из 4, и, наконец, любая из 3.
Всего 6*6*5*4*3 = 2160 вариантов.
2) На 1 и последнем местах цифры 1 и 9.
Либо 1 _ _ _ 9, либо 9 _ _ _ 1.
В каждом случае 5*4*3 = 60 вариантов. Всего 120 вариантов.
3) Цифры 5 и 7 стоят рядом, и они есть обязательно. Варианты:
57 _ _ _; _ 57 _ _; _ _ 57 _; _ _ _ 57; 75 _ _ _; _ 75 _ _; _ _ 75 _; _ _ _ 75.
Всего 8*5*4*3 = 40*12 = 480 вариантов.
8. Сочетания.
Водители:
C(2,8) = 8*7/2 = 56/2 = 28.
Но у нас чётко обозначено: один рулевой, второй штурман.
Поэтому умножаем на 2 и получаем 56.
Механики:
C(3, 12) = 12*11*10/(1*2*3) = 2*11*10 = 220.
Всего команд 56*220 = 12320
9. Тоже сочетания
С(5, 18) = 18*17*16*15*14/(1*2*3*4*5) = 3*17*4*3*14 = 51*12*14 = 8568 вариантов.