с задачей . Туристы проплыли на байдарке против течения 6 км и вернулись обратно. Но все путешествие они затратили 4ч 30мин. Какова собственная скорость байдарки, если скорость течения реки 1 км/ч. Если можно с рисунком НУЖНО.
Пусть токарь по плану должен был работать х дней и за это время он должен был изготовить по плану 19*х деталей.
Работая на новом станке, токарь фактически проработал (х-3) дня, изготавливая в день 19+7=26 деталей. За это время токарь фактически сделал 26(х-3) деталей, что оказалось на 20 деталей больше, чем было запланировано.
Составим уравнение:
26(х-3)-19х = 20
26х-78-19х = 20
7х = 98
х = 14 (дней) - должен был работать токарь
26(14-3)=26*11 = 286 (шт,) - деталей изготовил токарь фактически
А теперь
Краткая запись задания
Дней Деталей/день Деталей
По плану х 19 19х
Фактически х-3 26 26(х-3)
Составим уравнение:
26(х-3)-19х = 20
26х-78-19х = 20
7х = 98
х = 14 (дней) - должен был работать токарь
26(14-3)=26*11 = 286 (шт,) - деталей изготовил токарь фактически
Два человека одновременно отправляются из одного и того же места по одной дороге на прогулку до опушки леса, находящейся в 3,7 км от места отправления. Один идёт со скоростью 3,3 км/ч, а другой — со скоростью 4,1 км/ч. Дойдя до опушки, второй с той же скоростью возвращается обратно. На каком расстоянии от точки отправления произойдёт их встреча?
Формула движения: S=v*t
S - расстояние v - скорость t – время
х - расстояние, которое 1 человек.
3,7 + (3,7 - х) - расстояние, которое 2 человек весь путь до опушки, 3,7 км, и вернулся часть пути (3,7 - х).
Время одно и то же в пути, уравнение:
х/3,3 = (3,7 + (3,7 - х))/4,1
х/3,3 = (7,4 - х)/4,1
4,1х = (7,4 - х)*3,3
4,1х = 24,42 - 3,3х
4,1х + 3,3х = 24,42
7,4х = 24,42
х = 24,42/7,4
х = 3,3 (км до встречи 1 человек. На этом расстоянии произошла встреча.
Проверка:
3,3/3,3 = 1 (час) - был в пути 1 человек.
(7,4 - 3,3)/4,1 = 4,1/4,1 = 1 (час) - был в пути 2 человек, верно.
286 шт. деталей
Объяснение:
Пусть токарь по плану должен был работать х дней и за это время он должен был изготовить по плану 19*х деталей.
Работая на новом станке, токарь фактически проработал (х-3) дня, изготавливая в день 19+7=26 деталей. За это время токарь фактически сделал 26(х-3) деталей, что оказалось на 20 деталей больше, чем было запланировано.
Составим уравнение:
26(х-3)-19х = 20
26х-78-19х = 20
7х = 98
х = 14 (дней) - должен был работать токарь
26(14-3)=26*11 = 286 (шт,) - деталей изготовил токарь фактически
А теперь
Краткая запись задания
Дней Деталей/день Деталей
По плану х 19 19х
Фактически х-3 26 26(х-3)
Составим уравнение:
26(х-3)-19х = 20
26х-78-19х = 20
7х = 98
х = 14 (дней) - должен был работать токарь
26(14-3)=26*11 = 286 (шт,) - деталей изготовил токарь фактически
В решении.
Объяснение:
Два человека одновременно отправляются из одного и того же места по одной дороге на прогулку до опушки леса, находящейся в 3,7 км от места отправления. Один идёт со скоростью 3,3 км/ч, а другой — со скоростью 4,1 км/ч. Дойдя до опушки, второй с той же скоростью возвращается обратно. На каком расстоянии от точки отправления произойдёт их встреча?
Формула движения: S=v*t
S - расстояние v - скорость t – время
х - расстояние, которое 1 человек.
3,7 + (3,7 - х) - расстояние, которое 2 человек весь путь до опушки, 3,7 км, и вернулся часть пути (3,7 - х).
Время одно и то же в пути, уравнение:
х/3,3 = (3,7 + (3,7 - х))/4,1
х/3,3 = (7,4 - х)/4,1
4,1х = (7,4 - х)*3,3
4,1х = 24,42 - 3,3х
4,1х + 3,3х = 24,42
7,4х = 24,42
х = 24,42/7,4
х = 3,3 (км до встречи 1 человек. На этом расстоянии произошла встреча.
Проверка:
3,3/3,3 = 1 (час) - был в пути 1 человек.
(7,4 - 3,3)/4,1 = 4,1/4,1 = 1 (час) - был в пути 2 человек, верно.