По условию число делится на 5, значит, оно заканчивается на 5 или на 0. Но число переписанное в обратном порядке четырехзначное число, то это означает, что первоначальное число заканчивается только на 5.
(1000х+100у+10с+5) - исходное число,
где
1≤x≤9;
0≤y≤9;
0≤с≤9.
(5000+100с+10у+х) - новое число
По условию:
(1000х+100у+10с+5) - (5000+100с+10у+х) = 1629
1)
1000х+100у+10с+5 - 5000-100с-10у-х = 1629
1000х+100у+10с - 5000-100с-10у-х = 1629-5
1000х+100у+10с - 5000-100с-10у-х = 1624
Найдём из этого х.
0-x=4 => x =-4 - не подходит другой вариант: 10-x=4 => x=6
2)
Подставим х=6
1000*6+100у+10с - 5000-100с-10у-6 = 1624
6000+100у+10с - 5000-100с-10у = 1624+6
1000+100у+10с -100с-10у = 1630
90у-90с=630
Обе части разделим на 90.
у-с=7
с=у-7 (ОДЗ: у-7>=0; y>=7)
1) при у=9; с=9-7 => с=2
Получим число 6925.
2) при у=8; с=8-7 => с=1
Получим число 6815
3) при у=7; с=7-7 => с=0
Получим число 6705
Итак мы получили три числа, удовлетворяющих решению:
При каком значении параметра a неравенство (a−x)(7−x)≤0 имеет единственное решение?
(a−x)(7−x)≤0
(х-a)(x-7)≤0
В соответствии с методом интервалов, если направлена парабола ветвями вверх, а решаемое неравенство меньше 0, то ответом является промежуток между корнями. В данном случае:
[a;7], если a<7
[7;a], если a>7
если a=7, то неравенство примет вид (x-7)^2≤0. Так как квадрат отрицательным числом выражаться не может, то единственная возможность для решения х-7=0, откуда х=7. Единственное решение при а=7.
По условию число делится на 5, значит, оно заканчивается на 5 или на 0.
Но число переписанное в обратном порядке четырехзначное число, то это означает, что первоначальное число заканчивается только на 5.
(1000х+100у+10с+5) - исходное число,
где
1≤x≤9;
0≤y≤9;
0≤с≤9.
(5000+100с+10у+х) - новое число
По условию:
(1000х+100у+10с+5) - (5000+100с+10у+х) = 1629
1)
1000х+100у+10с+5 - 5000-100с-10у-х = 1629
1000х+100у+10с - 5000-100с-10у-х = 1629-5
1000х+100у+10с - 5000-100с-10у-х = 1624
Найдём из этого х.
0-x=4 => x =-4 - не подходит
другой вариант: 10-x=4 => x=6
2)
Подставим х=6
1000*6+100у+10с - 5000-100с-10у-6 = 1624
6000+100у+10с - 5000-100с-10у = 1624+6
1000+100у+10с -100с-10у = 1630
90у-90с=630
Обе части разделим на 90.
у-с=7
с=у-7 (ОДЗ: у-7>=0; y>=7)
1) при у=9; с=9-7 => с=2
Получим число 6925.
2) при у=8; с=8-7 => с=1
Получим число 6815
3) при у=7; с=7-7 => с=0
Получим число 6705
Итак мы получили три числа, удовлетворяющих решению:
6925; 6815; 6705
Проверка.
6925 – 5296 = 1629;
6815 – 5186 = 1629;
6705 – 5076 = 1629
ответ: 6925; 6815; 6705
8/Задание № 4:
При каком значении параметра a неравенство (a−x)(7−x)≤0 имеет единственное решение?
(a−x)(7−x)≤0
(х-a)(x-7)≤0
В соответствии с методом интервалов, если направлена парабола ветвями вверх, а решаемое неравенство меньше 0, то ответом является промежуток между корнями. В данном случае:
[a;7], если a<7
[7;a], если a>7
если a=7, то неравенство примет вид (x-7)^2≤0. Так как квадрат отрицательным числом выражаться не может, то единственная возможность для решения х-7=0, откуда х=7. Единственное решение при а=7.
ОТВЕТ: 7