1.Выполните действия:а)(2у+1/4(дробь))^2=4y^2+y+1/16б)(-7х-1)^2=49x^2+14x+1в)(а^2-2b)^2=a^4-4a^2b+4b^2г) (8x+x^3)^2=64x^2+48x+x^62.Представьте трехчлен двумя в виде квадрата двучлена:а)100х^2+1-20x=(10x-1)^2=(10x-1)(10x-1)б) x^4+4y^2+4x^2y=(x^2+2y)^2=( x^2+2y)( x^2+2y) 3.Раскройте скобки:а)(3а-b)^2-(3a+b)^2=9a^2-6ab+b^2-9a^2-6ab-b^2=-12ab б) (a+(b-c))^2=(a+(b-c))(a-(b-c))=(a+b-c)(a-b+c)
1простите выражения:а) (5a+0,2)(0,2-5а)=0,04 - 25a^2б)(-6а-2b(6а-2b)=-(6a+2b)(6a-2b)=-(36a^2-4b^2)= -36a^2+4b^2 в) (b^2+4)(b-2)(b+2)= (b^2+4)(b^2-4)=b^4-162.Разложите на множетели:а)-а^4+16=-( а^4-16)=-(a^2-4)(a^2+4) б)64x^2-(x-1)^2=(8x-(x-1))(8x+(x-1))=( 8x-x+1)(8x+x-1)=(7x+1)(9x-1) в) (3x-3)^2-(x+2)^2=(3x-3-x-2)( 3x-3+x+2)=(2x-5)(4x-1) 3.Решите уравнения:а)(2x-1)^2-4(x-2)(x+2)=0
4x^2-4x+1-4x^2+16=0
-4x+17=0
-4x=-17
x=17/4
x=4 целых 1/4б) 1|4(дробь)x^2=0,16
1/4x^2-0,16=0
(1/2x-0,4)(1/2+0,4)=0
1/2x-0,4=0 1/2+0,4=0
1/2x=0,4 1/2x=-0,4
x=0,8 x=-0,84.Представьте в виде произведения:а)8x^3+0,064у^3=(2x+0,4y)(4x^2-0,8xy+0,16y^2)б)х^6-64=(x^2-4)(x^4+4x^2+16)
1.Выполните действия:
а)(2у+1/4(дробь))^2=4y^2+y+1/16
б)(-7х-1)^2=49x^2+14x+1
в)(а^2-2b)^2=a^4-4a^2b+4b^2
г) (8x+x^3)^2=64x^2+48x+x^6
2.Представьте трехчлен двумя в виде квадрата двучлена:
а)100х^2+1-20x=(10x-1)^2=(10x-1)(10x-1)
б) x^4+4y^2+4x^2y=(x^2+2y)^2=( x^2+2y)( x^2+2y)
3.Раскройте скобки:
а)(3а-b)^2-(3a+b)^2=9a^2-6ab+b^2-9a^2-6ab-b^2=-12ab
б) (a+(b-c))^2=(a+(b-c))(a-(b-c))=(a+b-c)(a-b+c)
1простите выражения:
а) (5a+0,2)(0,2-5а)=0,04 - 25a^2
б)(-6а-2b(6а-2b)=-(6a+2b)(6a-2b)=-(36a^2-4b^2)= -36a^2+4b^2
в) (b^2+4)(b-2)(b+2)= (b^2+4)(b^2-4)=b^4-16
2.Разложите на множетели:
а)-а^4+16=-( а^4-16)=-(a^2-4)(a^2+4)
б)64x^2-(x-1)^2=(8x-(x-1))(8x+(x-1))=( 8x-x+1)(8x+x-1)=(7x+1)(9x-1)
в) (3x-3)^2-(x+2)^2=(3x-3-x-2)( 3x-3+x+2)=(2x-5)(4x-1)
3.Решите уравнения:
а)(2x-1)^2-4(x-2)(x+2)=0
4x^2-4x+1-4x^2+16=0
-4x+17=0
-4x=-17
x=17/4
x=4 целых 1/4
б) 1|4(дробь)x^2=0,16
1/4x^2-0,16=0
(1/2x-0,4)(1/2+0,4)=0
1/2x-0,4=0 1/2+0,4=0
1/2x=0,4 1/2x=-0,4
x=0,8 x=-0,8
4.Представьте в виде произведения:
а)8x^3+0,064у^3=(2x+0,4y)(4x^2-0,8xy+0,16y^2)
б)х^6-64=(x^2-4)(x^4+4x^2+16)
а)sin 5п/4=sin(π-π/4)=sin π/4=√2/2
б)tg 7п/6=tg(π+π/6)=tg π/6=√3/3
в)cos п/6 - ctg π/4=√3/2-1г)tg 3п/4 x cos 3п/4+сtg(-п/6) х sin п/6=sin 3π/4/cos 3π/4*cos 3π/4-cosπ/6/sinπ/6*sinπ/6=sin 3π/4-cos π/6=sin(π-π/4)-cosπ/6=sinπ/4-cosπ/6=√2/2-√3/2
д)sin 510-sin270 ctg270=sin (2π+π-30)-sin 270*cos270/sin270=sin30-cos(2π-90)=1/2-1=-0.5
2)Упростите выражение
сos^2 - sin^2t/tg(-t)ctgt=cos²t-sin²t/(-tg t)*ctg t=cos²t+sin²t=1
3)Решите уравнение:
a)sint=1/2
t=x = (-1)^k П/6 + Пk, k∈Z;
б)sin(п/2 + t)=- корень из 3/2
cos t=-√3/2
t=+-5π/6+2πk, k∈Z
4)Известно,что ctg(t-п)=-3/4 и п/2 п/2<t<п
ctg(-(π-t))=-ctg(π-t)=ctg t
ctg t=cos t/sin t=-3/4
4cost=-3sint
4cost=-3√(1-cos²t)
16cos²t=9(1-cos²t)
16cos²t=9-9cos²t
25cos²t=9
cos²t=9/25
cost=+-√(9/25)=+-3/5, cost<0 (t∈(π/2; π)
cost=-3/5=-0.6
sin t=cos t/ctg t=-0.6/(-3/4)=0.2*4=0.8
Найдите:
a)cos(3п/2 - t)=-sint=-0.8
б)cos(п + t)=-cost=-(-0.6)=0.6
5)Расположите в порядке возростания:
a=cos6
b=cos7
c=sin6=sin (π/2-(π/2-6))=cos (90-6)=cos 84
d=sin 4=sin (π/2-(π/2-4))=cos (90-4)=cos 86
Поскольку cos убывает на промежутке [0; π/2], то
cos 86<cos 84<cos7<cos6
d<c<b<a