1) Находим первую производную функции: y' = 2x+1 Приравниваем ее к нулю: 2x+1 = 0 x1 = -1/2 Вычисляем значения функции f(-1/2) = 3/4 Используем достаточное условие экстремума функции одной переменной. Найдем вторую производную: y'' = 2 Вычисляем: y''(-1/2) = 2>0 - значит точка x = -1/2 точка минимума функции.
2) Находим первую производную функции: y' = e^x/x-e^x/x^2 или y' = ((x-1)•e^x)/x^2 Приравниваем ее к нулю: ((x-1)•e^x)/x^2 = 0 x1 = 1 Вычисляем значения функции f(1) = e Используем достаточное условие экстремума функции одной переменной. Найдем вторую производную: y'' = e^x/x-2e^x/x^2+2e^x/x^3 или y'' = ((x^2-2x+2)•e^x)/x^3 Вычисляем: y''(1) = e>0 - значит точка x = 1 точка минимума функции.
Объяснение:
сложим эти два уравнения и преобразуем по формуле куба разности:
Для простоты вычислений введём константу С
C≈0,4142
Из последнего выражения имеем следующие тождества
Подставляем x в первое уравнение
В последнее С³ подставим его значение, чтобы сократить семёрку.
Теперь решаем обычное квадратное уравнение
Тут получается что дискриминант отрицательный и корней нет.
Вариант второй, графический
из первого уравнения получаем график функции
А из второго
Строим графики.
Видим, что точек пересечения нет.
Графики стремятся приблизится друг к другу, но не пересекаются
y' = 2x+1
Приравниваем ее к нулю:
2x+1 = 0
x1 = -1/2
Вычисляем значения функции
f(-1/2) = 3/4
Используем достаточное условие экстремума функции одной переменной. Найдем вторую производную:
y'' = 2
Вычисляем:
y''(-1/2) = 2>0 - значит точка x = -1/2 точка минимума функции.
2) Находим первую производную функции:
y' = e^x/x-e^x/x^2
или
y' = ((x-1)•e^x)/x^2
Приравниваем ее к нулю:
((x-1)•e^x)/x^2 = 0
x1 = 1
Вычисляем значения функции
f(1) = e
Используем достаточное условие экстремума функции одной переменной. Найдем вторую производную:
y'' = e^x/x-2e^x/x^2+2e^x/x^3
или
y'' = ((x^2-2x+2)•e^x)/x^3
Вычисляем:
y''(1) = e>0 - значит точка x = 1 точка минимума функции.