{т.к. точки находятся на окружности, для каждого набора из >= 3 вершин будет существовать только один многоугольник (другие соединить точки приведут к самопересечению)}
1. Каждый многоугольник с только красными вершинами можно дополнить до многоугольника с одной синей вершиной 2. Каждую пару красных вершин (они не считаются за многоугольники) можно дополнить до треугольника с одной синей вершиной (треугольник уже является многоугольником)
--> Многоугольников с одной синей вершиной больше на количество пар красных вершин = 6*5/2 = 15
2) {3x+4y=-1 Тут всё нужно умножить на -2, чтобы потом избавиться от x 2x+5y=4 Тут всё нужно умножить на 3, чтобы потом избавиться от X АНАЛОГИЧНО ПЕРВОМУ: {-6x-8y=2 6x+15y=12
1. Каждый многоугольник с только красными вершинами можно дополнить до многоугольника с одной синей вершиной
2. Каждую пару красных вершин (они не считаются за многоугольники) можно дополнить до треугольника с одной синей вершиной (треугольник уже является многоугольником)
--> Многоугольников с одной синей вершиной больше на количество пар красных вершин = 6*5/2 = 15
3x-2y=7
Получаем:
{4x+2y=14
3x-2y=7
7x + 0y = 21
7x=21
x=21:7
x=3
2) подставляем в ЛЮБОЕ НАЧАЛЬНОЕ УРАВНЕНИЕ:
Например: 2x+y=7
2*3 + y=7
6+y=7
=> y= 7/6 или 1.1/6
2)
{3x+4y=-1 Тут всё нужно умножить на -2, чтобы потом избавиться от x
2x+5y=4 Тут всё нужно умножить на 3, чтобы потом избавиться от X
АНАЛОГИЧНО ПЕРВОМУ:
{-6x-8y=2
6x+15y=12
0x+7y=14
7y=14
y=2
2) подставляем в ЛЮБОЕ НАЧАЛЬНОЕ УРАВНЕНИЕ:
Например:
2x+5y=4
2x+5*2=4
2x+10=4
2x=4-10
2x=-6
x= - 3