2x - y = -3; <=> y = 2x + 3. (1)
3x + y = -2; <=> y = -3x - 2. (2)
Построим графики функций (1) и (2). Координаты точки их пересечения и будут решением системы.
Функции (1) и (2) линейные, то есть их графиками являются прямые. Для построения прямой достаточно двух точек.
Строим график функции (1): при x = 0 y = 3; при x = 1 y = 5. Через точки (0, 3) и (1, 5) проводим прямую.
Строим график функции (2): при x = 0 y = -2; при x = -1 y = 1. Через точки (0, -2) и (-1, 1) проводим прямую.
По чертежу очевидно, что графики функций (1) и (2) пересекаются в точке (-1, 1). Следовательно, (-1, 1) - решение системы.
ответ: (-1, 1).
Чертеж:
Y = - x² + 4*x - 5
Построить, исследовать.
РЕШЕНИЕ
1. Пересечение с осью Х.
Решаем квадратное уравнение и ....дискриминант отрицательный - корней нет.
2. Пересечение с осью У -
Y(0) = - 5.
3. Локальный экстремум находим через корень первой производной.
Y'(x) = - 2*x + 4 = -2*(x - 2) = 0
4. Парабола с отрицательным коэффициентом.
Максимум при Х=2.
Ymax(2) = - 4 + 4*2 - 5 = -1
5. Построение графика. Функция четная.
Вершина в точке А(2;-1), ветви параболы вниз.
Вспоминаем квадраты натуральных чисел: 1, 4, 9, 16.
Рисунок с графиком в приложении.
Задание ВЫПОЛНЕНО.
2x - y = -3; <=> y = 2x + 3. (1)
3x + y = -2; <=> y = -3x - 2. (2)
Построим графики функций (1) и (2). Координаты точки их пересечения и будут решением системы.
Функции (1) и (2) линейные, то есть их графиками являются прямые. Для построения прямой достаточно двух точек.
Строим график функции (1): при x = 0 y = 3; при x = 1 y = 5. Через точки (0, 3) и (1, 5) проводим прямую.
Строим график функции (2): при x = 0 y = -2; при x = -1 y = 1. Через точки (0, -2) и (-1, 1) проводим прямую.
По чертежу очевидно, что графики функций (1) и (2) пересекаются в точке (-1, 1). Следовательно, (-1, 1) - решение системы.
ответ: (-1, 1).
Чертеж: