Объяснение:
1) Область Определения Функции x ∈ (-2; +∞)
Нули = пересечение с осями (-1;0) и (0; -1)
Убывает на всей ООФ
Промежутки знакопостоянства y >0 при x ∈ (-2; -1), y <0 при x ∈ (-1; +∞)
Ни четная, ни нечетная
Непериодическая
Экстремумов нет, область значений (-∞; +∞)
Вертикальная асимптота х = -2
2) Область Определения Функции x ∈ (2; +∞)
Пересечение с ox (3;0)
Промежутки знакопостоянства y >0 при x ∈ (2; 3), y <0 при x ∈ (3; +∞)
Вертикальная асимптота х = 2
x2 + 4x + 8 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = 42 - 4·1·8 = 16 - 32 = -16
Так как дискриминант меньше нуля, то уравнение не имеет действительных решений.
4x2 - 12x + 9 = 0
D = b2 - 4ac = (-12)2 - 4·4·9 = 144 - 144 = 0
Так как дискриминант равен нулю то, квадратное уравнение имеет один действительных корень:
x = 122·4 = 1.5
3x2 - 4x - 1 = 0
D = b2 - 4ac = (-4)2 - 4·3·(-1) = 16 + 12 = 28
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
x1 = 4 - √282·3 = 23 - 13√7 ≈ -0.21525043702153024
x2 = 4 + √282·3 = 23 + 13√7 ≈ 1.5485837703548635
Объяснение:
1) Область Определения Функции x ∈ (-2; +∞)
Нули = пересечение с осями (-1;0) и (0; -1)
Убывает на всей ООФ
Промежутки знакопостоянства y >0 при x ∈ (-2; -1), y <0 при x ∈ (-1; +∞)
Ни четная, ни нечетная
Непериодическая
Экстремумов нет, область значений (-∞; +∞)
Вертикальная асимптота х = -2
2) Область Определения Функции x ∈ (2; +∞)
Пересечение с ox (3;0)
Убывает на всей ООФ
Промежутки знакопостоянства y >0 при x ∈ (2; 3), y <0 при x ∈ (3; +∞)
Ни четная, ни нечетная
Непериодическая
Экстремумов нет, область значений (-∞; +∞)
Вертикальная асимптота х = 2
x2 + 4x + 8 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = 42 - 4·1·8 = 16 - 32 = -16
Так как дискриминант меньше нуля, то уравнение не имеет действительных решений.
4x2 - 12x + 9 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = (-12)2 - 4·4·9 = 144 - 144 = 0
Так как дискриминант равен нулю то, квадратное уравнение имеет один действительных корень:
x = 122·4 = 1.5
3x2 - 4x - 1 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = (-4)2 - 4·3·(-1) = 16 + 12 = 28
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
x1 = 4 - √282·3 = 23 - 13√7 ≈ -0.21525043702153024
x2 = 4 + √282·3 = 23 + 13√7 ≈ 1.5485837703548635
2x2 - 9x + 15 = 0 Найдем дискриминант квадратного уравнения: D = b2 - 4ac = (-9)2 - 4·2·15 = 81 - 120 = -39 Так как дискриминант меньше нуля, то уравнение не имеет действительных решений.