Самостоятельная работа. 1 Дан числовой ряд 10, 12, 7, 12, 13, 11, 12, 8, 12, 16. Найдите среднее арифметическое,
Моду, медиану и размах этого ряда.
2 По данным выборки 1, 8, 9, 5, 9, 5, 95, 8 определите, насколько отличается среднее
арифметическое от медианы?
3 Даны два набора чисел. 2, 6, 11 и 5, 9, 7, 13. Укакого набора меднана больше и на
сколько?
в ряду натуральных чисел 2, 8, 11, 22 ... 19 одно число пропущено. Найдите его если
среднее арифметическое ряда равен 11.
5 Какое число нужно добавить к набору чисел 13.
4. 5, чтобы его среднее арифметическое
стало равным 8
6 Найдите число, пропущенное в ряду чисел 10, 15, 3, 4 ... 24. 16.
4. если известно, что
среднее арифлетическое ряда равно
его медитане без приколов надо решить всё
ответ:
y = x^4 – 2x^2 – 8.
найдем координаты точек пересечения графика функции с осью абсцисс (х).
x^4 – 2x^2 – 8 = 0.
произведем замену: а = x^2, a^2 = x^4.
a^2 – 2а – 8 = 0.
дискриминант:
d = 2^2 – 4*(-8) = 4 + 32 = 36.
a1 = (2 + √36)/2 = (2 + 6)/2 = 8/2 = 4.
a2 = (2 - √36)/2 = (2 – 6)/2 = -4/2 = -2 – данное значения не подходит, потому что x^2 не может быть ниже нуля.
x^2 = 4 ⇒ х1 = 2, х2 = -2.
уравнение касательной:
у = f(x0) + f ‘(x0)(x – x0).
1. x0 = x1 = 2.
f(x0) = 2^4 – 2*(2^2) – 8 = 16 – 8 – 8 = 0.
f ‘(x) = 4x^3 – 4x.
f ‘(x0) = 4*8 – 4*2 = 32 – 8 = 24.
уравнение касательной:
у1 = 24(x – 2) = 24х – 48.
2. x0 = x1 = - 2.
f(x0) = (-2)^4 – 2*((-2)^2) – 8 = 16 – 8 – 8 = 0.
f ‘(x) = 4x^3 – 4x.
f ‘(x0) = 4*(-8) – 4*(-2) = -32 + 8 = -24.
уравнение касательной:
у2 = -24(x + 2) = -24х - 48.
3. чтобы найти точку пересечения касательных у1 = 24х – 48 и у2 = -24х - 48, приравняем их правые части и найдем координату х:
24х – 48 = -24х - 48;
24х + 24х = - 48 + 48;
48х = 0;
х = 0/48;
х = 0.
у1 = 24*0 – 48 = 0 – 48 = -48.
ответ: (0; -48).
Выделим в левой части полный квадрат.
Для этого запишем выражение с2+6с в следующем виде:
с2+6с=с2+2*3*с.
В полученном выражении первое слагаемое - квадрат числа с, а второе - удвоенное произведение с на 3. По этому чтобы получить полный квадрат, нужно прибавить 3в квадрате, так как
с2 + 2• с • 3 + 3в квадрате = (с + 3)в квадрате.
Преобразуем теперь левую часть уравнения
с2 + 6х - 40 = 0,прибавляя к ней и вычитая 3 в квадрате. Имеем:
с2 + 6с - 40 = с2 + 2• с • 3 + 3в квадрате - 3в квадрате - 40 = (с + 3)в квадрате - 9 - 40 = (с + 3)в квадрате - 49=0
Таким образом, данное уравнение можно записать так:
(с + 3)в квадрате - 49 =0,
(х + 3)в квадрате = 49.
Следовательно, х + 3 - 7 = 0, х1 = -4, или х + 3 = -7, х2 = -10