A=4k+3, k∈Z - все числа при делении которых на 4 получаем остаток 3.
Найдём из a=4k+3, все числа при делении на 3 которых получаем остаток 2.
По отношению к делимости на 3 всё множество чисел k можно разбить на три класса: числа вида 3n, 3n+1 ,3n+2. Других целых k нет.
Если k=3n, то 4*(3n)+3=(12n+3)+0 - остаток 0 при делении на 3 Если k=3n+1, то 4*(3n+1)+3=(12n+3)+1 - остаток 1 при делении на 3. Если k=3n+2, то 4*(3n+2)+3=(12n+9)+2 - остаток 2 при делении на 3.
Получаем 12n+11=(12n+10)+1. (12n+10)+1 при делении на 2 всегда получаем остаток 1.
Найдём из a=4k+3, все числа при делении на 3 которых получаем остаток 2.
По отношению к делимости на 3 всё множество чисел k можно разбить на три класса: числа вида 3n, 3n+1 ,3n+2. Других целых k нет.
Если k=3n, то 4*(3n)+3=(12n+3)+0 - остаток 0 при делении на 3
Если k=3n+1, то 4*(3n+1)+3=(12n+3)+1 - остаток 1 при делении на 3.
Если k=3n+2, то 4*(3n+2)+3=(12n+9)+2 - остаток 2 при делении на 3.
Получаем 12n+11=(12n+10)+1.
(12n+10)+1 при делении на 2 всегда получаем остаток 1.
ответ: 12n+11, n∈Z
подстановки.
{3x - y = 7 ⇒ у = 3х - 7
{2x + 3y = 1
2х + 3(3х - 7) = 1
2х + 9х - 21 = 1
11х = 1 + 21
11х = 22
х = 22 : 11
х = 2
у = 3 * 2 - 7 = 6 - 7
у = - 1
ответ : ( 2 ; - 1) .
сложения.
{3x - y = 7 | * 3
{2x + 3y = 1
{9x - 3y = 21
{2x + 3y = 1
(9x - 3y) + (2x + 3y) = 21 + 1
(9x + 2x) + ( - 3y + 3y) = 22
11x = 22
x = 22 : 11
х = 2
3 * 2 - у = 7
6 - у = 7
-у = 7 - 6
-у = 1
у = - 1
ответ : ( 2 ; - 1) .