Произведём некоторые оценки. Прежде всего, помним об ограниченности синуса и косинуса. -1 <= sin x <= 1, -1 <= cos x <= 1 Эти оценки позволяют нам сказать, что sin^1993 x <= sin^2 x, cos^1993 x <= cos^2 x(что очевидно). Что будет, если я оба неравенства сложу? sin^1993 x + cos^1993 x <= sin^2 x + cos^2 x = 1 То есть, всегда выполняется неравенство <=1 левой части уравнения, и лишь иногда достигается равенство единице. Это наш случай. очевидно, что это бывает, когда
sin^1993 x = sin^2 x cos^1993x = cos^2 x Это система. Теперь решаем по отдельности каждое из уравнений системы. sin^1993 x - sin^2 x = 0 sin^2 x (sin^1991 x - 1) = 0 Уравнение распадается на два: sin^2 x = 0 или sin^1991 x = 1 sin x = 0 sin x = 1 x = пиn x = пи/2 + 2пиk
Решаем второе уравнение. cos^1993 x - cos^2 x = 0 cos^2 x (cos^1991 x - 1) = 0 Уравнение распадается на два: cos x = 0 или cos x = 1 x = пи/2 + пиl x = 2пиm Здесь я предполагаю, что n,k,l,m - целые числа.
Теперь осталось лишь пересечь решения обоих уравнений системы. x1 = 2пиn x2 = пи/2 + 2пиk Это и будет решением исходного уравнения.
Эту задачу можно решить из условия, что прямая 4х+3у=к является касательной к гиперболе ху = 3. При этом 1 решение в точке касания.
Уравнение гиперболы можно представить так: у = 3/х.
Производная этой функции равна y' = -3/x².
Прямая с угловым коэффициентом имеет вид у = (-4/3)х + (к/3).
Производная равна угловому коэффициенту касательной.
-3/x² = -4/3.
4x² = 9.
х = +-(2/3).
у = 3/(+-(2/3) = +-2. Это координаты точек касания.
Подставим эти значения в уравнение заданной прямой.
+-2 = (-4/3)*(+-(3/2) + (к/3).
+-2 = -+2 + (к/3).
(к/3) = +-4.
к = +-12.
Прежде всего, помним об ограниченности синуса и косинуса.
-1 <= sin x <= 1, -1 <= cos x <= 1
Эти оценки позволяют нам сказать, что sin^1993 x <= sin^2 x, cos^1993 x <= cos^2 x(что очевидно).
Что будет, если я оба неравенства сложу?
sin^1993 x + cos^1993 x <= sin^2 x + cos^2 x = 1
То есть, всегда выполняется неравенство <=1 левой части уравнения, и лишь иногда достигается равенство единице. Это наш случай. очевидно, что это бывает, когда
sin^1993 x = sin^2 x
cos^1993x = cos^2 x
Это система.
Теперь решаем по отдельности каждое из уравнений системы.
sin^1993 x - sin^2 x = 0
sin^2 x (sin^1991 x - 1) = 0
Уравнение распадается на два:
sin^2 x = 0 или sin^1991 x = 1
sin x = 0 sin x = 1
x = пиn x = пи/2 + 2пиk
Решаем второе уравнение.
cos^1993 x - cos^2 x = 0
cos^2 x (cos^1991 x - 1) = 0
Уравнение распадается на два:
cos x = 0 или cos x = 1
x = пи/2 + пиl x = 2пиm
Здесь я предполагаю, что n,k,l,m - целые числа.
Теперь осталось лишь пересечь решения обоих уравнений системы.
x1 = 2пиn
x2 = пи/2 + 2пиk
Это и будет решением исходного уравнения.