Самостоятельная работа по теме: «Бинарные отношения. Матрица бинарного отношения»
Вариант 1
1. Даны множества: X=(-2,-1,4,5} и Y={-2,0,6}.
а) Задайте отношение R: «x-y> О»
б) Найдите область определения и область значений отношения R
в) Составьте матрицу бинарного отношения R
г) Составьте обратное отношение R' и его матрицу
В решении.
Объяснение:
1. Найдите приближенное значение:
√21 ≈ 4,6;
√70 ≈ 8,4;
√40 ≈ 6,3.
2. Извлеките корень:
√(49x²) = 7х;
2√(0,09у¹² ) = 2*0,3у⁶ = 0,6у⁶;
0,5√(900с⁷) = 0,5√(900с⁶*с) = 0,5*30с³√с = 15с³√с.
3. Сравните числа:
Нужно внести число перед корнем под корень, возведя перед этим в квадрат и сравнивать подкоренные выражения.
а) 6√3 и 7√2
√36*3 и √49*2
√108 и √98
6√3 > 7√2;
б) 0,5√8 и 0,3√6
√0,25*8 и √0,09*6
√2 и √0,54
0,5√8 > 0,3√6
4. Решите уравнения:
а) х² = 16;
х=±√16
х=±4
б) 2х² – 10 = 0;
2х²=10
х²=5
х=±√5;
в) √х= -3;
х= (-3)²
х=9;
г) 3√х-18=0
3√х=18
√х=18/3
√х=6
х=6²
х=36.
5. Упростите выражения :
а) √((√14-4)²)+√((√14+1)²) =
=(√14-4+√14+1)=
=2√14-3;
б) √((1-√12)²)-√((4-√12)²) =
=(1-√12-4+√12)=
= -3.
чертим систему координат, ставим стрелки в положительных направлениях (вверх и вправо), подписываем оси вправо х, вверх - у, отмечаем начало координат - точку О, отмечаем по каждой оси единичный отрезок в 1 клеточку.
Переходим к графикам:
у=√х - кривая, проходящая через начало координат - точку О, заполним таблицу:
х= 0 1 4 1/4
у= 0 1 2 1/2
Отмечаем точки на плоскости
Проводим линию через начало координат и точки , подписываем график у=√х
у=2-х - прямая, для построения нужны две точки, запишем их в таблицу:
х= 0 4
у= 2 -2
Отмечаем точки (0;2) и (4;-2) в системе координат и проводим через них прямую линию. Подписываем график у=2-х
Смотрим на точку пересечения двух данных прямых, отмечаем точку М, ищем её координаты, записываем М(1; 1)
Всё!