Для геометрической прогрессии со знаменателем Q и первым членом B₁ верно следующее: Bₙ = Qⁿ⁻¹ * B₁, откуда Qⁿ⁻¹ = Bₙ : B₁ = 1024 : 2 = 512. Итак, отмечаем: Qⁿ⁻¹ = 512. Формула для суммы первых n членов прогрессии:
Функция √х - частный случай степенной функции. Эта функция не имеет своего собственного имени (в отличие от квадратичной функции или кубической функции) и называется просто формулой.
График функции - ветвь параболы.
1) Постройте график функции: y= √x;
Придать значения х, подставить в уравнение, вычислить у, записать в таблицу. Так как под знаком квадратного корня могут стоять только неотрицательные числа, значения аргумента должны быть неотрицательными.
Для геометрической прогрессии со знаменателем Q и первым членом B₁ верно следующее: Bₙ = Qⁿ⁻¹ * B₁, откуда Qⁿ⁻¹ = Bₙ : B₁ = 1024 : 2 = 512. Итак, отмечаем: Qⁿ⁻¹ = 512. Формула для суммы первых n членов прогрессии:
Sₙ = B₁(Qⁿ - 1)/(Q - 1) = B₁(Q * Qⁿ⁻¹ – 1) / (Q – 1) = 2*(512Q - 1) / (Q - 1) = 2046 ⇒
1024Q - 2 = 2046(Q - 1) ⇒ 1024Q - 2 = 2046Q - 2046 ⇒
2046Q - 1024Q = 2046 - 2 ⇒ 1022Q = 2044 ⇒ Q = 2044 : 1022, Q = 2.
Далее Qⁿ⁻¹ = 512 ⇒ 2ⁿ⁻¹ = 512 = 2⁹ ⇒ n - 1 = 9, откуда n = N = 10,
за N заново обозначили количество членов данной прогрессии
ответ: Q = 2, N = 10
Проверка: 2 + 4 + 8 + 16 + 32 + 64 + 128 + 256 + 512 + 1024 = 2046
В решении.
Объяснение:
Функция √х - частный случай степенной функции. Эта функция не имеет своего собственного имени (в отличие от квадратичной функции или кубической функции) и называется просто формулой.
График функции - ветвь параболы.
1) Постройте график функции: y= √x;
Придать значения х, подставить в уравнение, вычислить у, записать в таблицу. Так как под знаком квадратного корня могут стоять только неотрицательные числа, значения аргумента должны быть неотрицательными.
Таблица:
х 1 4 9
у 1 2 3
По вычисленным точкам построить ветвь параболы.
2) С графика найдите:
а) значение y, соответствующее значению x=3,5;
Согласно графика, при х = 3,5 у = 1,9;
б) значение x, соответствующее значение y=1,5;
Согласно графика, при х = 2,3 у = 1,5.