В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Valentinka14485
Valentinka14485
27.02.2021 06:41 •  Алгебра

сделать 1-5 задания таким образом, чтобы было видно, что это человек сделал сам,

Показать ответ
Ответ:
larryisreallmao
larryisreallmao
25.06.2020 22:08

Объяснение:

2.1

1)Если сложить две матрицы порядка n, то сумма элементов будет определятся как сумма соответствующих элементов матриц как и в обычном сложении чисел : cij = aij + bij (операция сложения элементов матриц замкнуто для любых матриц)

2)Умножение треугольной матрицы на число будет соответствовать умножению каждого элемента на это число K * A = K *aij( операция определена для любый матриц)

3) Несложно заметить, что при перемножении треугольных матриц мы получим треугольную матрицу , а операция умножения элементов данных у нас уже определена => множество замкнуто

0,0(0 оценок)
Ответ:
bbigigitovadakit
bbigigitovadakit
09.11.2022 02:21

Задание 1: По свойству интеграла, можем расписать:  ∫4x^3dx -  ∫2dx +  ∫cos2xdx ; ответ: x^4-2x + sin2x/2 + C

∫cos2xdx =  {t = 2x; t' = 2}(Подставить дифференциал, использую dx=1/t' *dt) =  ∫cost/2dt =  1/2∫costdt = 1/2*sint = sin2x/2(Взяли замену 2х за t и возвращаем назад)

Задание 2:  Здесь использую интегрирование по частям:  ∫u dv  = uv - ∫v du, отсюда замену возьмем {u =4x+5; dv=cos4x dx}; Нужно найти дифференциал du, используя du = u' d, а v вычисляем с и подставить du = 4dx и v = sin4x/4; Получаем: (4x+5)*(sin4x/4)- ∫(sin4x/4)*4dx; ∫sin4x/4dx = {t = 4x; t' =4} = ∫sin4x * 1/4 dt = ∫sint/4 dt (Также, как и впервой задаче с cos);

(4x+5)*(sin4x/4) - 1/4∫sin(t)dt; (4x+5)*(sin4x/4)-1/4*(-cos(t)); Делаем возврат t на 4х;  ответ: ((4x+5)*sin(4x)+cos(4x))/4 + C

Задание 3: Делаю замену {t = cosx; t' =-sinx} = -∫t^5 dt (Подставить дифференциал, использую dx=1/t' *dt) = -t^6/6 + C, делаю возврат t = cosx  и ответ будет -(cos^6(x)/6) + C

0,0(0 оценок)
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота