Поскольку необходимо представить число 68 в виде суммы двух чисел, то пусть первое число х, тогда второе число (68-х). Тогда сумма квадратов слагаемых будет равна: х²+(68-х)²=х²+68²-2*68*х+х²=2х²-136х+4624
Здесь можно найти минимальное значение 2-мя 1) с производной (2х²-136х+4624)'=4x-136 4x-136=0 4x=136 x=136:4 х=34 Значит будет 2 одинаковых положительных числа 34 и 34.
2) с графика y=2х²-136х+4624 Это парабола - ветви направлены вверх. Значит наименьшее значение будет в вершине параболы. х₀=-b/2a=-(-136)/4=34
Для вычисления промежутков знакопостоянства сперва приравняем нашу функцию к нолю и решим полученное квадратное уравнение, то есть
Теперь необходимо нарисовать ось абсцисс (0х) и на ней отобразить полученные точки, то есть мы получим 3 интервала, такие как 1. (- беск; -3) 2. [-3;4] 3.(4; беск) Определим знак функции на каждом интервале 1. (- беск; -3): у(-5)=-(-5)^2+(-5)+12=-25-5+12=-30+12=-18 <0 2. [-3;4] y(0)=0^2+0+12=0+0+12=12 >0 3.(4; беск) y(5)=-(5)^2+5+12=-25+17=-8 <0 И так мы видим что на интервале (- беск; -3)и(4; беск) функцию имеет отрицательный знак,а на интервале [-3; 4] соответственно положительный. ответ: х Є (- беск; -3) и(4; беск) отрицательные значения, х Є [-3; 4] положительные значения
Тогда сумма квадратов слагаемых будет равна:
х²+(68-х)²=х²+68²-2*68*х+х²=2х²-136х+4624
Здесь можно найти минимальное значение 2-мя
1) с производной
(2х²-136х+4624)'=4x-136
4x-136=0
4x=136
x=136:4
х=34
Значит будет 2 одинаковых положительных числа 34 и 34.
2) с графика
y=2х²-136х+4624
Это парабола - ветви направлены вверх. Значит наименьшее значение будет в вершине параболы.
х₀=-b/2a=-(-136)/4=34
34+34=68
Теперь необходимо нарисовать ось абсцисс (0х) и на ней отобразить полученные точки, то есть мы получим 3 интервала, такие как
1. (- беск; -3)
2. [-3;4]
3.(4; беск)
Определим знак функции на каждом интервале
1. (- беск; -3): у(-5)=-(-5)^2+(-5)+12=-25-5+12=-30+12=-18 <0
2. [-3;4] y(0)=0^2+0+12=0+0+12=12 >0
3.(4; беск) y(5)=-(5)^2+5+12=-25+17=-8 <0
И так мы видим что на интервале (- беск; -3)и(4; беск) функцию имеет отрицательный знак,а на интервале [-3; 4] соответственно положительный.
ответ: х Є (- беск; -3) и(4; беск) отрицательные значения,
х Є [-3; 4] положительные значения