Для нахождения точек пересечения с осью Х x^4-4x^2=0 х1=0; х2=2; х3=-2; Для нахождения экстреммумов функции нужно взять производную и прировнять ее 0 f(x)=x^4-4x^2 => f'(x)=4*x^3-8x=0 Корни: х1=0; х2=2^0.5; х3=-2^0.5; (корень квадратный из 2) теперь нужно узнать, что это за точки минимумы или максимумы, возмем значение слева и справа от точки и подставим в уранение если знак меняется с + на - значит максимум если наоборот минимум -2^0.5 0 2^0.5 ---*---о*о*---о*-- -2 -1 1 2
x=0 => y= 0 x=-2^0.5 => y= -4 x=2^0.5 => y= -4
x=-2 => y= 0 x=-1 => y=-3 x=1 => y=-3 x=2 => y= 0
Значение функции меняется от -2 до -2^0.5 функция убывает от 0 до -4 , а от -2^0.5 до -1 ворастает от -4 до -3 следовательно f(-2^0.5) минимум. Значение функции меняется от -1 до 0 функция возрастает от -3 до 0 , а 0 до 1 убывает от 0 до -3 следовательно f(0) максимум. Значение функции меняется от 1 до 2^0.5 функция убывает от -3 до -4 , а от 2^0.5 до 2 ворастает от -4 до 0 следовательно f(2^0.5) минимум.
Исследование завершено Точки пересечения с осью Х х1=0; х2=2; х3=-2; Минимум (-2^0.5;-4) и (2^0.5;-4) Максимум (0;0)
Cos(5*x) = 0 5*x = acos(0) + pi*n, или 5*x = pi/2 + pi*n, где n - любое целое число разделим обе части полученного ур-ния на 5 получим ответ: x = (pi/2 + pi*n)/5 sin4x=0 4*x = asin(0) + 2*pi*n, или 4*x = 2*pi*n разделим обе части полученного ур-ния на 4 получим ответ: x = pi*n/2 sinx/2=0 x/2 = asin(0) + 2*pi*n, или x/2 = 2*pi*n разделим обе части полученного ур-ния на 1/2 получим ответ: x = 4*pi*n cosx/3=0 x/3 = acos(0) + pi*n, или x/3 = pi/2 + pi*n разделим обе части полученного ур-ния на 1/3 получим ответ: x = 3*(pi/2 + pi*n) sin(3x+п/4)=0 3*x + pi/4 = asin(0) + 2*pi*n, или 3*x + pi/4 = 2*pi*n перенесём pi/4 в правую часть ур-ния с противоположным знаком, итого: 3*x = -pi/4 + 2*pi*n разделим обе части полученного ур-ния на 3 получим ответ: x = (-pi/4 + 2*pi*n)/3 cos(8x+п/3)=0 8*x + pi/3 = acos(0) + pi*n, или 8*x + pi/3 = pi/2 + pi*n перенесём pi/3 в правую часть ур-ния с противоположным знаком, итого: 8*x = pi/6 + pi*n разделим обе части полученного ур-ния на 8 получим ответ: x = (pi/6 + pi*n)/8 sin(x/7+п/3)=0 x/7 + pi/3 = asin(0) + 2*pi*n, или x/7 + pi/3 = 2*pi*n перенесём pi/3 в правую часть ур-ния с противоположным знаком, итого: x/7 = -pi/3 + 2*pi*n разделим обе части полученного ур-ния на 1/7 получим ответ: x = 7*(-pi/3 + 2*pi*n) cos(x/3+п/6)=0 x/3 + pi/6 = acos(0) + pi*n, или x/3 + pi/6 = pi/2 + pi*n, где n - любое целое число перенесём pi/6 в правую часть ур-ния с противоположным знаком, итого: x/3 = pi/3 + pi*n разделим обе части полученного ур-ния на 1/3 получим ответ: x = 3*(pi/3 + pi*n)
x^4-4x^2=0
х1=0; х2=2; х3=-2;
Для нахождения экстреммумов функции нужно взять производную и прировнять ее 0
f(x)=x^4-4x^2 => f'(x)=4*x^3-8x=0
Корни: х1=0; х2=2^0.5; х3=-2^0.5; (корень квадратный из 2)
теперь нужно узнать, что это за точки минимумы или максимумы, возмем значение слева и справа от точки и подставим в уранение если знак меняется с + на - значит максимум если наоборот минимум
-2^0.5 0 2^0.5
---*---о*о*---о*--
-2 -1 1 2
x=0 => y= 0
x=-2^0.5 => y= -4
x=2^0.5 => y= -4
x=-2 => y= 0
x=-1 => y=-3
x=1 => y=-3
x=2 => y= 0
Значение функции меняется от -2 до -2^0.5 функция убывает от 0 до -4 , а от -2^0.5 до -1 ворастает от -4 до -3 следовательно f(-2^0.5) минимум.
Значение функции меняется от -1 до 0 функция возрастает от -3 до 0 , а 0 до 1 убывает от 0 до -3 следовательно f(0) максимум.
Значение функции меняется от 1 до 2^0.5 функция убывает от -3 до -4 , а от 2^0.5 до 2 ворастает от -4 до 0 следовательно f(2^0.5) минимум.
Исследование завершено
Точки пересечения с осью Х
х1=0; х2=2; х3=-2;
Минимум
(-2^0.5;-4) и (2^0.5;-4)
Максимум
(0;0)