Найдем какие остатки может давать квадрат натурального числа при делении на 8 , пусть n = t² и t = 2k (чётно ) , тогда n = 4k² , если 4k² = 8m +r , то r = 4k² - 8m ⇒ r-кратно 4 ⇒ r = 0 или r = 4 , если n = 2k +1 ( нечётно) ,то n = 4k² +4k +1 = 4k(k+1) +1 , одно из чисел к или к+1 четно ⇒ 4k(k+1) кратно 8 ⇒ n = 8p +1 ⇒ остаток при делении n на 8 равен 1 ⇒ квадрат натурального числа при делении на 8 может дать в остатке 0 , 1 или 4 ⇒ если а , b , c - квадраты целых чисел ,то каждое из них имеет вид : 8m , 8n+1 или 8l +4 осталось доказать , что если сложить 3 числа этого типа ( необязательно с разными остатками ) , то никогда не получим число вида 8n +7 , предположим , что это возможно , так как число 8n +7 нечетно ,то в эту сумму должно войти число вида 8n +1 один или 3 раза подряд , но если сложить 3 числа этого типа , то получим число вида : z = 8q+3 ( остаток не равен 7 ) , а если число вида 8n +1 входит в сумму один раз , то сумма остальных (четных) чисел должна быть равной 8s +6 , но это число не кратно 4 , а сумма чисел вида 8m и 8l+4 кратна 4 ⇒ и это невозможно , что и доказывает утверждение
Найдем какие остатки может давать квадрат натурального числа при делении на 8 , пусть n = t² и t = 2k (чётно ) , тогда n = 4k² , если 4k² = 8m +r , то r = 4k² - 8m ⇒ r-кратно 4 ⇒ r = 0 или r = 4 , если n = 2k +1 ( нечётно) ,то n = 4k² +4k +1 = 4k(k+1) +1 , одно из чисел к или к+1 четно ⇒ 4k(k+1) кратно 8 ⇒ n = 8p +1 ⇒ остаток при делении n на 8 равен 1 ⇒ квадрат натурального числа при делении на 8 может дать в остатке 0 , 1 или 4 ⇒ если а , b , c - квадраты целых чисел ,то каждое из них имеет вид : 8m , 8n+1 или 8l +4 осталось доказать , что если сложить 3 числа этого типа ( необязательно с разными остатками ) , то никогда не получим число вида 8n +7 , предположим , что это возможно , так как число 8n +7 нечетно ,то в эту сумму должно войти число вида 8n +1 один или 3 раза подряд , но если сложить 3 числа этого типа , то получим число вида : z = 8q+3 ( остаток не равен 7 ) , а если число вида 8n +1 входит в сумму один раз , то сумма остальных (четных) чисел должна быть равной 8s +6 , но это число не кратно 4 , а сумма чисел вида 8m и 8l+4 кратна 4 ⇒ и это невозможно , что и доказывает утверждение
Итак, ситуация номер 1 - имеется единственное решение:
Если , то имеется либо 2 и более корней, либо их вообще нет.
Мы знаем, что x=0, тогда
Решения для просто откидываем, комплексные числа нам неинтересны.
Первая ситуация разобрана, но проверку стоит провести:
Второе решение не подходит, т.к.
Проверка выполнена, имеется единственное решение при a=0
Вторая ситуация:
Необходимо 2 корня, значит значение t будет единственным!
Данное уравнение не имеет решений, и при любом значении a D>0 (D по t).
Т.е. мы не имеем решений для второй ситуации.
Третья ситуация:
Т.к. D>0, то и в третьей ситуации удовлетворяющих значений a просто нет.