Берешь это в табличку : y| 1 | 3 | x| 2 | 3 | Если y = 1, то x = 2; если y = 3, то x = 3. Делала так: Подбирала любое значение y и находила значение x, как в любом уравнении. На примере первого : 1=2x-3; x=2. Во втором так же. Далее на координатной плоскости отмечаем точки с координаты и, полученными ранее. Например точка K ( 2;1) и точка L (3;3). Обратите внимание, что в ответе координаты точки А мы пишем именно в таком порядке, т.к. На первом месте значение х, а на втором у. Когда вы отметили точки, вы вполне можете провести через них прямую, сделайте это. И лучше провести ее через всю плоскость, а не от точки до точки. Удачи!
Обращаем внимание, что к последнему значению прибавляется половина "перебора". Так как 18,7 + 0,1 = 18,8, то можно считать, что интервалы посчитаны верно.
Теперь распределяем значения вариационного ряда по заданным интервалам (количество значений в каждом интервале -- это :
[15,8; 16,3) -- 15,9; 16,2,
[16,3; 16,8) -- 16,5; 16,6;
[16,8, 17,3) -- 17,2;
[17,3; 17,8) -- нет значений;
[17,8; 18,3) -- 17,8; 18,1;
[18,3; 18,8) -- 18,4; 18,6; 18,7.
Проверяем, все ли значения учли 2 + 2 + 1 + 0 + 2 + 3 = 10.
Подсчитав количество значений в каждом интервале, найдём относительные частоты.
Получим:
* Если сложить все частоты, то должна получится единица (для самопроверки).
** Иногда рассчитывают середины этих интервалов (сумма концов интервала, делённая пополам)
Берешь это в табличку : y| 1 | 3 | x| 2 | 3 | Если y = 1, то x = 2; если y = 3, то x = 3. Делала так: Подбирала любое значение y и находила значение x, как в любом уравнении. На примере первого : 1=2x-3; x=2. Во втором так же. Далее на координатной плоскости отмечаем точки с координаты и, полученными ранее. Например точка K ( 2;1) и точка L (3;3). Обратите внимание, что в ответе координаты точки А мы пишем именно в таком порядке, т.к. На первом месте значение х, а на втором у. Когда вы отметили точки, вы вполне можете провести через них прямую, сделайте это. И лучше провести ее через всю плоскость, а не от точки до точки. Удачи!
бъяснение:
16,2; 18,4; 17,2; 18,6; 15,9; 16,5; 18,1; 18,7; 16,6; 17,8.
1. Поиск среднего арифметического результатов.
Воспользуемся формулой для поиска среднего арифметического:
2. Составление интервальной таблицы.
Для удобства упорядочим вариационный ряд:
15,9; 16,2; 16,5; 16,6; 17,2; 17,8; 18,1; 18,4; 18,6; 18,7.
Найдём размах вариации (разность наибольшего и наименьшего значений):
18,7 - 15,9 = 2,8
Найдём количество интервалов для таблицы:
2,8 : 0,5 = 5,6 ≈ 6 интервалов.
Так как длина всех интервалов (6 * 0,5) больше, чем размах на 0,2, то от минимального значения надо отступить половины "перебора", то есть:
15,9 - 0,1 = 15,8
Это будет началом первого интервала из таблицы.
Шаг указан, поэтому следующие интервалы будут получаться откладыванием ("прибавлением") 0,5. Получим следующие интервалы:
[15,8; 16,3), [16,3; 16,8); [16,8, 17,3); [17,3; 17,8); [17,8; 18,3); [18,3; 18,8).
Обращаем внимание, что к последнему значению прибавляется половина "перебора". Так как 18,7 + 0,1 = 18,8, то можно считать, что интервалы посчитаны верно.
Теперь распределяем значения вариационного ряда по заданным интервалам (количество значений в каждом интервале -- это :
[15,8; 16,3) -- 15,9; 16,2,
[16,3; 16,8) -- 16,5; 16,6;
[16,8, 17,3) -- 17,2;
[17,3; 17,8) -- нет значений;
[17,8; 18,3) -- 17,8; 18,1;
[18,3; 18,8) -- 18,4; 18,6; 18,7.
Проверяем, все ли значения учли 2 + 2 + 1 + 0 + 2 + 3 = 10.
Подсчитав количество значений в каждом интервале, найдём относительные частоты.
Получим:
* Если сложить все частоты, то должна получится единица (для самопроверки).
** Иногда рассчитывают середины этих интервалов (сумма концов интервала, делённая пополам)
Таблица во вложении:
Объяснение: