1) В простейшем случае достаточно выбрать один центр и из него построить 24 дороги ко всем остальным деревням. Все деревни будут связаны друг с другом через центр. Но если надо, чтобы от каждой деревни к каждой шла отдельная дорога, тогда рассуждаем так. Мы проводим от каждой из 25 деревень дороги ко всем 24. Но, если мы соединили деревни А и В, то эта же дорога соединяет В и А. Значит, количество дорог надо разделить на 2. 25*24/2 = 25*12 = 300. Но в ответе почему-то 600.
2) 9^(x+6) + 3^(x^2) = 2*3^(x^2 + x + 6) = 2*3^(x^2)*3^(x+6) Видимо, здесь опечатка в задании, потому что это уравнение имеет 3 иррациональных корня: x1 ~ -6,63; x2 ~ -1,87; x3 ~ 2,87, но как его решать, или хотя бы узнать, что корней 3 - совершенно непонятно. Корни я нашел с Вольфрам Альфа.
Все деревни будут связаны друг с другом через центр.
Но если надо, чтобы от каждой деревни к каждой шла отдельная дорога,
тогда рассуждаем так.
Мы проводим от каждой из 25 деревень дороги ко всем 24.
Но, если мы соединили деревни А и В, то эта же дорога соединяет В и А.
Значит, количество дорог надо разделить на 2.
25*24/2 = 25*12 = 300. Но в ответе почему-то 600.
2) 9^(x+6) + 3^(x^2) = 2*3^(x^2 + x + 6) = 2*3^(x^2)*3^(x+6)
Видимо, здесь опечатка в задании, потому что это уравнение имеет 3 иррациональных корня: x1 ~ -6,63; x2 ~ -1,87; x3 ~ 2,87, но как его решать, или хотя бы узнать, что корней 3 - совершенно непонятно.
Корни я нашел с Вольфрам Альфа.
Масса одного яблока 120 г, масса олной груши 110 г
Объяснение:
Исправим условие задачи: ; кг яблок и 3 кг груш не может быть равно 810 г Поэтому читаем условие так: 4 яблока и 3 груши имеют массу 810 г.
Пусть х - масса 1-го яблока
у - масса одной груши
4/х - количество яблок
По условию
4х + 3у = 810 (1)
3х - 2у = 140 (2)
Умножаем 1-е уравнение на 3, а 2-е уравнение на -4
12х + 9у = 2430
-12х + 8у = -560
Сложим эти уравнения
17у = 1870
у = 110 (г) - масса 1-й груши
Подставим х = 110 в 1-е уравнение
4х + 3 · 110 = 810
4х + 330 = 810
4х = 480
х = 120 (г) - масса 1-го яблока