СДЕЛАЙТЕ ПОЛНЫМ РЕШЕНИЕМ ТОЛЬКО ПОЛНЫМ У выражение: А) (y-2)^2+2y(y-2)= B)3(x+4)^2-(x+5)(5-x)= 2)разложить на множители: А)0,25а-а^3= Б)mx^2-2mx+m= B)a-b^2+a^2-b= 3)решить уравнение A) x^5-x^4=0 B)x^3-16x=0
Потрібно знайти суму чисел: 10 + 15 + 20 + ... + 95.
Цей ряд чисел утворює арифметичну прогресію, тобто послідовність чисел, кожен член якої, починаючи з 2-го, дорівнює попередньому, складеному з одним і тим же числом, званим різницею прогресії - це число 5.
Маємо: а₁ = 10, різниця d = 5.
Знайдемо номер останнього члена прогресії, рівного 95:
an = a₁₁ + d (n - 1) - формула n-го члена
95 = 10 + 5 (n - 1),
10 + 5n - 5 = 95,
5 + 5n = 95,
5n = 95 - 5,
5n = 90,
n = 90: 5,
n = 18.
Значить, все двозначних чисел, кратних числу 5, - 18 штук.
Знайдемо S₁₈.
Sn = (a₁ + a₁₈) / 2 · n - формула суми n перших членів арифметичної прогресії
Потрібно знайти суму чисел: 10 + 15 + 20 + ... + 95.
Цей ряд чисел утворює арифметичну прогресію, тобто послідовність чисел, кожен член якої, починаючи з 2-го, дорівнює попередньому, складеному з одним і тим же числом, званим різницею прогресії - це число 5.
Маємо: а₁ = 10, різниця d = 5.
Знайдемо номер останнього члена прогресії, рівного 95:
an = a₁₁ + d (n - 1) - формула n-го члена
95 = 10 + 5 (n - 1),
10 + 5n - 5 = 95,
5 + 5n = 95,
5n = 95 - 5,
5n = 90,
n = 90: 5,
n = 18.
Значить, все двозначних чисел, кратних числу 5, - 18 штук.
Знайдемо S₁₈.
Sn = (a₁ + a₁₈) / 2 · n - формула суми n перших членів арифметичної прогресії
S₁₈ = (10 + 95) / 2 · 18 = 105 · 9 = 945.
Відповідь: 945.
В решении.
Объяснение:
Сократить дробь:
а) (-16с⁵)/12с³=
сократить (разделить) 16 и 12 на 4, с⁵ и с³ на с³:
=(-4с²)/3=
= -4с²/3;
б) (4a-4b)/(3a-3b)=
=4(a-b)/3(a-b)=
сократить (разделить) (a-b) и (a-b) на (a-b):
=4/3;
в) (а²-5а)/(25-а²)=
=(а²-5а)/ -(а²-25)=
=а(а-5)/ -[(а-5)(а+5)]=
сократить (разделить) (а-5) и (а-5) на (а-5):
= -а/(а+5);
г) a⁵b⁷/a⁷b⁵=
при делении показатели степеней вычитаются (при одинаковых основаниях):
сократить (разделить) а⁵ и а⁷ на а⁵, b⁵ и b⁷ на b⁵:
=1*b²/a²*1=
=b²/a²;
д) (3х³+3ху²)/(6ух²+6у³)=
=3х(х²+у²)/6у(х²+у²)=
сократить (разделить) 3 и 6 на 3, (х²+у²) и (х²+у²) на (х²+у²):
=х/2у;
е) (b²-4)/(8-b³)=
в числителе разность квадратов, развернуть, в знаменателе разность кубов, развернуть:
=[(b-2)(b+2)] / (2³-b³)=
=[(b-2)(b+2)] / -(b³-2³)=
=[(b-2)(b+2)] / -[(b-2)(b²+2b+4)]=
сократить (разделить) (b-2) и (b-2) на (b-2):
= -(b+2)/(b²+2b+4).