Сделайте с развёрнутым решением, 1. Найдите четырнадцатый член и сумму двадцати первых членов арифметической прогрессии (an), если a1 = 2 и a2 = 5.
2. Найдите пятый член и сумму четырёх первых членов геометрической прогрессии (bn), если b1 = 27, а знаменатель q = 1/3.
3. Найдите сумму бесконечной геометрической прогрессии 28, -14, 7, … .
4. Найдите номер члена арифметической прогрессии (an), равного 7,3, если a1 = 10,3, а разность прогрессии d = -0,5.
5. Какие два числа надо вставить между числами 2,5 и 20, чтобы они вместе с данными числами образовали геометрическую прогрессию?
6. При каком значении х значения выражений 2х + 6, х + 7 и х + 4 будут последовательными членами геометрической прогрессии? Найдите члены этой прогрессии.
a2 = 3pi/4+2pi*k; cos a2 = -√2/2
cos(60 + a1) = cos 60*cos a1 - sin 60*sin a1 =
= 1/2*√2/2 - √3/2*√2/2 = √2/4*(1 - √3) = -√2(√3 - 1)/4
cos(60 + a2) = cos 60*cos a2 - sin 60*sin a2 =
= -1/2*√2/2 - √3/2*√2/2 = -√2/4*(1 + √3) = -√2(√3 + 1)/4
2) sin a = 2/3; cos b = -3/4; a ∈ (pi/2; pi); b ∈ (pi; 3pi/2)
cos a < 0; sin^2 a = 4/9; cos^2 a = 1-4/9 = 5/9; cos a = -√5/3
sin b < 0; cos^2 b = 9/16; sin^2 b = 1-9/16 = 7/16; sin b = -√7/4
sin(a+b) = sin a*cos b + cos a*sin b =
= 2/3*(-3/4) + (-√5/3)(-√7/4) = -6/12 + √35/12 = (√35 - 6)/12
cos(-b) = cos b = -3/4
Дано уравнение |x² + ax| = -3a. ОДЗ: -3а ≥ 0, a ≤ 0.
Оно равносильно системе:
{x² + ax + 3a = 0 {x² + ax + 3a = 0 (1)
{-x² - ax + 3a = 0|*(-1) {x² + ax - 3a = 0. (2)
Найдём граничные значения а, при которых уравнение имеет 1 решение.
Для этого приравниваем нулю дискриминант.
(1) Д = а² - 12а = а(а - 12) = 0.
Получаем а = 0 и а = 12 (это значение не проходит по ОДЗ).
(2) Д = а² + 12а = а(а + 12) = 0.
Получаем а = 0 и а = -12.
Методом интервалов определяем соответствие значения а заданному условию.
Значение а больше 0 не проходит по ОДЗ.
Значение а меньше -12 даёт 4 корня заданного уравнения.
ответ: a ∈ (-12; 0).