1) Верно. У пар-грамма смежные углы в сумме равны 180, поэтому внешний угол при одном угле равен второму углу. 2) √2 ~ 1,414, 2 + 1,414 = 3,414 < 3,5 - неверно. Сумма двух любых сторон треугольника должна быть больше третьей стороны. 3) Площадь круга S(кр) = pi*D^2/4 ~ 0,785*D^2 Квадрат, вписанный в круг, имеет диагональ, равную диаметру. d = D, сторона квадрата a = d/√2 = D/√2 Площадь квадрата S(кв) = a^2 = D^2/2 Отношение S(кв)/S(кр) = (D^2/2)/(0,785*D^2) = 1/(2*0.785) ~ 0,63 Нет, неверно. 4) Верно. Этот треугольник - прямоугольный, по т. Пифагора 2 + 6 = 8 При этом √8 = 2*√2, то есть катет равен половине гипотенузы. Значит, этот катет находится против угла 30 градусов.
2) √2 ~ 1,414, 2 + 1,414 = 3,414 < 3,5 - неверно. Сумма двух любых сторон треугольника должна быть больше третьей стороны.
3) Площадь круга S(кр) = pi*D^2/4 ~ 0,785*D^2
Квадрат, вписанный в круг, имеет диагональ, равную диаметру.
d = D, сторона квадрата a = d/√2 = D/√2
Площадь квадрата S(кв) = a^2 = D^2/2
Отношение S(кв)/S(кр) = (D^2/2)/(0,785*D^2) = 1/(2*0.785) ~ 0,63
Нет, неверно.
4) Верно. Этот треугольник - прямоугольный, по т. Пифагора
2 + 6 = 8
При этом √8 = 2*√2, то есть катет равен половине гипотенузы.
Значит, этот катет находится против угла 30 градусов.
1) 12•a-3•b=3•(4•a-b)=3•(4•(-3,4)-5,6)=3•(-13,6-5,6)=-3•(13,6+5,6)=-3•19,2=-57,6
2) 1-0,6•x≠1+0,6•x
-0,6•x≠0,6•x
0≠1,2•x
0≠x
Достаточно сравнить x с нулем.
Поскольку x=5>0, то 0<x
Поэтому
1-0,6•x<1+0,6•x
3 а) 12•a-10•b-10•a+6•b=(12-10)•a-(10-6)•b=2•a-4•b=
=2•(a-2•b)=2•(-3,4-2•5,6)=2•(-3,4-11,2)=2•(-14,6)=-29,2
3 б) 4•(3•x-2)+7=4•3•x-4•2+7=12•x-8+7=12•x-1=12•5-1=60-1=59
3 в) 8•x-(2•x+5)+(x-1)=8•x-2•x-5+x-1=7•x-6=7•5-6=35-6=29
4) -5•(0,6•c-1,2)-1,5•c-3=-5•0,6•(c-2)-1,5•c-3=-3•(c-2)-1,5•c-3=
=-3•c-3•(-2)-1,5•c-3=-(3+1,5)•c+6-3=-4,5•c+3=3•(1-1,5•c)=3•[1-1,5•(-4,9)]=
=3•(1+7,35)=3•8,35=25,05
5) 7•x-(5•x-(3•x+y))=7•x-(5•x-3•x-y)=7•x-(2•x-y)=7•x-2•x+y=5•x+y