Сеня и Женя играют в игру Крестики крестики игра заключается в том что Сеня и Женя по очереди ставят крестики на доску 21х21 при этом нельзя ставить семь крестиков подряд по вертикали или по горизонтали (по диагонали можно) какое наибольшее количество крестиков Сеня и Женя могут поставить на доску?? Каково решение?
11, 13, 15, ..., 99 - двузначные натуральные нечетные
Найдем их общее количество: последовательность является арифметической прогрессией, где:
чисел
а)
Нечетное число:
Числа, удовлетворяющие условию: 11, 13, ..., 31
Их количество:
Вероятность:
б)
Условию будут удовлетворять числа: 91, 93, 95, 97, 99 (5 шт.)
Вероятность:
в)
Если х=9, то у=9
Если х=8, то у=9
Получаем числа: 99, 89 (2 шт.)
Вероятность:
г)
Если х=1, то у=1; 3
Если х=2, то у=1
Если х=3, то у=1
Числа: 11, 13, 21, 31 (4 шт.)
Вероятность:
3/(2^(2 - x²) -1)² - 4/(2^(2- x²) -1) + 1 ≥ 0 ;
замена : t = 2^(2-x²) -1
3 / t² - 4 / t +1 ≥ 0 ;
(t² - 4t +3) / t² ≥ 0
для квадратного трехчлена t² - 4t +3 t₁=1 корень: 1² - 4*1+3 = 1- 4+3 =0.
t₂ =3/t₁=3/1=1 (или t₂ =4 -1=3)
* * * наконец можно и решить уравнение t² - 4t +3=0 * * *
(t² - 4t +3) / t² ≥ 0 ⇔ (t -1)(t - 3) / t² ≥ 0 .
+ + - +
Объяснение:a)
{ 2^(2-x²) -1 ≤ 1 ; 2^(2-x²) -1 ≠ 0 .⇔ { 2^(2-x²) ≤ 2 ; 2^(2-x²) ≠ 1 . ⇔
{ 2^(2-x²) ≤ 2¹ ; 2^(2-x²) ≠ 2⁰.⇔ {2-x² ≤ 1 ; 2 - x² ≠ 0.⇔{ x² -1 ≥ 0 ; x² ≠ 2⇔
{ (x+1)(x-1) ≥ 0 ; x ≠ ±√2 . ⇒ x∈ ( -∞ ; -√2 ) ∪ (-√2 ; -1] ∪ [1 ; √2) U (√2 ; ∞) .
b)
2^(2-x²) -1 ≥ 3 ⇔ 2^(2-x²) ≥ 4 ⇔2^(2-x²) ≥ 2² ⇔2- x² ≥ 2 ⇔ x² ≤ 0 ⇒ x=0.
ответ: x∈ ( -∞ ; -√2 ) ∪ (-√2 ; -1] ∪ { 0} ∪ [1 ; √2) U (√2 ; ∞) .