Серёжа может успеть за день либо собрать 5 компьютеров,либо настроить 8 компьютеров. какое наибольшее кол-во компьютеров он может собрать и настроить за один день.
12 (км/час) - скорость моторной лодки в стоячей воде.
Объяснение:
Моторная лодка за 1 час проплыла 6 км против течения и 5 км по течению. Найди скорость моторной лодки в стоячей воде, если скорость течения реки равна 3 км/ч.
Формула движения: S=v*t
S - расстояние v - скорость t – время
х - скорость моторной лодки в стоячей воде.
х+3 - скорость моторной лодки по течению.
х-3 - скорость моторной лодки против течения.
По условию задачи составляем уравнение:
6/(х-3) + 5/(х+3)=1
Общий знаменатель (х-3)(х+3), надписываем над числителями дополнительные множители, избавляемся от дроби:
6*(х+3) + 5*(х-3)=1*(х-3)(х+3)
Раскрыть скобки:
6х+18+5х-15=х²-9
Привести подобные члены:
-х²+11х+12=0/-1
х²-11х-12=0, квадратное уравнение, ищем корни:
D=b²-4ac = 121+48=169 √D= 13
х₁=(-b-√D)/2a
х₁=(11-13)/2
х₁= -2/2 -1, отбрасываем, как отрицательный.
х₂=(-b+√D)/2a
х₂=(11+13)/2
х₂=24/2
х₂=12 (км/час) - скорость моторной лодки в стоячей воде.
Обозначим скорость автомобиля через Х км/ч. До встречи с другим автомобилем он путь Х*1=Х км. Следовательно второй автомобиль путь до встречи 100-Х. Время в пути из города в город первого автомобиля равно 100/Х ч. Время в пути из города в город второго автомобиля равно 100/(100-Х). Разница во времени по условию 50 мин или 5,6 ч. Пусть скорость первого больше скорости второго, тогда второй ехал на 50 мин дольше. Составим уравнение. 100/Х+5/6=100/(100-Х). После освобождения от знаменателей получишь квадратное уравнение 60000-600х-600х-500х+5х^2=0. Получаем x^2-340x+12000=0 Находим корни Х1=40, Х2=300. Нам подходит Х=40 к/ч. Скорость второго - 30 км/ч
12 (км/час) - скорость моторной лодки в стоячей воде.
Объяснение:
Моторная лодка за 1 час проплыла 6 км против течения и 5 км по течению. Найди скорость моторной лодки в стоячей воде, если скорость течения реки равна 3 км/ч.
Формула движения: S=v*t
S - расстояние v - скорость t – время
х - скорость моторной лодки в стоячей воде.
х+3 - скорость моторной лодки по течению.
х-3 - скорость моторной лодки против течения.
По условию задачи составляем уравнение:
6/(х-3) + 5/(х+3)=1
Общий знаменатель (х-3)(х+3), надписываем над числителями дополнительные множители, избавляемся от дроби:
6*(х+3) + 5*(х-3)=1*(х-3)(х+3)
Раскрыть скобки:
6х+18+5х-15=х²-9
Привести подобные члены:
-х²+11х+12=0/-1
х²-11х-12=0, квадратное уравнение, ищем корни:
D=b²-4ac = 121+48=169 √D= 13
х₁=(-b-√D)/2a
х₁=(11-13)/2
х₁= -2/2 -1, отбрасываем, как отрицательный.
х₂=(-b+√D)/2a
х₂=(11+13)/2
х₂=24/2
х₂=12 (км/час) - скорость моторной лодки в стоячей воде.
Проверка:
6/9+5/15=2/3+1/3=1 (час), верно.
До встречи с другим автомобилем он путь Х*1=Х км.
Следовательно второй автомобиль путь до встречи 100-Х.
Время в пути из города в город первого автомобиля равно 100/Х ч.
Время в пути из города в город второго автомобиля равно 100/(100-Х).
Разница во времени по условию 50 мин или 5,6 ч. Пусть скорость первого больше скорости второго, тогда второй ехал на 50 мин дольше. Составим уравнение.
100/Х+5/6=100/(100-Х).
После освобождения от знаменателей получишь квадратное уравнение 60000-600х-600х-500х+5х^2=0.
Получаем x^2-340x+12000=0
Находим корни Х1=40, Х2=300. Нам подходит Х=40 к/ч.
Скорость второго - 30 км/ч