Сервісний центр зобов'язався відремонтувати за певний час 72 гаджети. Роботу було закінчено на 3 дні раніше, бо план щоденно перевиконували на 4 одиниці. За скільки днів сервісний центр зобов'язався виконати роботу?
Если разных цветов меньше 10, то по-любому найдется 11 кубиков одного цвета. Например, если всего 9 цветов, и мы покрасим по 10 кубиков в каждый цвет, то мы используем 90 кубиков. Остается 11. Любой из них красим в любой из наших 9 цветов - и получаем 11 кубиков одного цвета. Если всего 10 цветов, то, покрасив по 10 кубиков в каждый цвет, мы получим 100 цветных кубиков. Красим 101-ый кубик в любой цвет, и получаем 11 кубиков одного цвета. Теперь пусть у нас больше 10 разных цветов. Например, 11. Тогда мы всегда сможем выбрать 11 кубиков, покрашенных в 11 разных цветов. Если цветов будет еще больше, например, 15, то выбрать 11 кубиков разных цветов будет еще проще. Таким образом, мы всегда можем найти или 11 одинаковых, или 11 разных кубиков.
Пусть x км/ч — скорость второго автомобиля, тогда (x + 10) км/ч — скорость первого автомобиля. Они встретились через 3 часа. За это время второй автомобиль проехал 3x км, а первый автомобиль — 3(x + 10) км. Используя эти данные и условия задачи, составим уравнение и решим его:
3(x + 10) + 3x = 450,
3x + 30 + 3x = 450,
6x = 450 - 30,
6x = 420,
x = 420 / 6,
x = 70 км/ч.
Мы нашли скорость второго автомобиля. Теперь найдем скорость второго автомобиля:
70 + 10 = 80 км/ч.
ответ: скорость первого автомобиля равна 80 км/ч, скорость второго автомобиля — 70 км/ч.
Например, если всего 9 цветов, и мы покрасим по 10 кубиков в каждый цвет, то мы используем 90 кубиков. Остается 11. Любой из них красим в любой из наших 9 цветов - и получаем 11 кубиков одного цвета.
Если всего 10 цветов, то, покрасив по 10 кубиков в каждый цвет, мы получим 100 цветных кубиков. Красим 101-ый кубик в любой цвет, и получаем 11 кубиков одного цвета.
Теперь пусть у нас больше 10 разных цветов. Например, 11.
Тогда мы всегда сможем выбрать 11 кубиков, покрашенных в 11 разных цветов.
Если цветов будет еще больше, например, 15, то выбрать 11 кубиков разных цветов будет еще проще.
Таким образом, мы всегда можем найти или 11 одинаковых,
или 11 разных кубиков.
Пусть x км/ч — скорость второго автомобиля, тогда (x + 10) км/ч — скорость первого автомобиля. Они встретились через 3 часа. За это время второй автомобиль проехал 3x км, а первый автомобиль — 3(x + 10) км. Используя эти данные и условия задачи, составим уравнение и решим его:
3(x + 10) + 3x = 450,
3x + 30 + 3x = 450,
6x = 450 - 30,
6x = 420,
x = 420 / 6,
x = 70 км/ч.
Мы нашли скорость второго автомобиля. Теперь найдем скорость второго автомобиля:
70 + 10 = 80 км/ч.
ответ: скорость первого автомобиля равна 80 км/ч, скорость второго автомобиля — 70 км/ч.
Объяснение: