Ширина прямоугольника составляет 40 % его длины. Если его длину уменьшить на 2 см, а ширину увеличить на 4 см, то получится прямоугольник, площадь которого равна площади данного прямоугольника. Найдите измерения первоначального прямоугольника. Скиньте фотографию
Размах ряда чисел - это разность между наибольшим и наименьшим из этих чисел.
Среднее арифметическое ряда чисел - это отношение суммы этих чисел на число слагаемых.
Мода ряда чисел - это число, которое встречается в этом ряду чаще других.
Медиана ряда чисел - это число, стоящее посередине упорядоченного по возрастанию ряда чисел (в случае, если количество чисел нечетное).
Медиана ряда чисел - это полусумма двух стоящих посередине чисел упорядоченного по возрастанию ряда (в случае, если количество чисел четное).
Задание 1.
Размах: 47-25=22;
Среднее арифметическое: \frac{39+33+45+25+33+40+47+38+34+33+40+44+45+32+27}{15}= \frac{555}{15}=37
15
39+33+45+25+33+40+47+38+34+33+40+44+45+32+27
=
15
555
=37 ;
Мода: 33;
Медиана: 38.
Задание 2.
Размах: 44-30=14;
Среднее арифметическое: \frac{36+30+35+36+36+38+40+41+44+43+36+41}{12}= \frac{456}{12}=38
12
36+30+35+36+36+38+40+41+44+43+36+41
=
12
456
=38 ;
Мода: 36;
Медиана: \frac{38+40}{2}=39
2
38+40
=39 .
Задание 3.
Размах: 46-24=22;
Среднее арифметическое: \frac{34+24+39+36+34+39+38+46+38+34+46+41+43+40}{14}= \frac{532}{14}=38
14
34+24+39+36+34+39+38+46+38+34+46+41+43+40
=
14
532
=38 ;
Мода: 34;
Медиана: \frac{38+46}{2}=42
2
38+46
=42 .
Задание 4.
Размах: 58-24=34;
Среднее арифметическое: \frac{39+45+35+24+35+38+58+34+38+35+40+42+45+36+56}{15}= \frac{600}{15}=40
15
39+45+35+24+35+38+58+34+38+35+40+42+45+36+56
=
15
600
=40 ;
Мода: 35;
Медиана: 34.
Нужно раскрыть скобки по формулам сокращенного умножения
Сначала раскроем (а+1)во второй степени,получится
а в квадрате +2а+1
Дальше рассмотрим оставшиеся,то есть -(2а+3)во второй степени
-(4а в квадрате +12а+9 )
Раскроем скобки и получится
-4а в квадрате -12а-9
В итоге получилось
а в квадрате +2а+1-4а в квадрате -12а-9
Находим подобные и получается
-3 а в квадрате -10 а -8=0
Теперь решаем дискриминантом
Д(дискриминант)=корню из четырех ,то есть двум
А1= -2 целые одна третья
А2= -1
Второе уравнение решается аналогично
25 с в квадрате +80с +64 -с в квадрате +20с-100=0
Что-бы было удобней вычитать Д сократим все на два,и получится
6с в квадрате+25с-9=0
Д=корень из 841 =29
С1=1/3
С2=11/3=3 целых 2/3