Примем весь урожай за единицу. По плану нужно было выполнять в день 1:12=1/12 часть работы После 8 дней совместной работы убрано было 8*1/12=8/12=2/3 и осталось убрать 1 -2/3=1/3 часть всей работы. Вторая бригада закончила 1/3 часть работы за 7 дней. Следовательно, каждый день она выполняла (1/3):7=1/21 часть работы. Всю работу вторая бригада могла бы выполнить за 1:1/21=21 день. Первая выполнила бы всю работу за х дней с производительностью 1/х работы в день. Разделив всю работу на сумму производительностей каждой бригады получим количество дней, за которую она могла быть выполнена, т.е. 12 дней. 1:(1/21+1/х)=12 12*(1/21+1/х)=1 12/21+12/х=1 9х=252 х=28 ( дней) ответ: Первая бригада могла бы выполнить работу за 28 дней, вторая - за 21 день.
1. Решите систему уравнений методом подстановки: (4х+у=3 и 6х-2у=1)
2. Решите систему уравнений методом сложения:(3х-2у=3 и 5х+2у=16)
3. Студент получил стипендию 600 руб. купюрами достоинством 50 руб. и 10 руб., всего 24 купюры. Сколько всего было выдано студенту 50-рублевых и 10-рублевых купюр в отдельности?
4. Прямая y=kx+b проходит через точки А(3;8) и В(-4;1). Найдите k и b и запишите уравнение этой прямой.
5. Решите систему уравнений:3-(х-2у)-4у=18 и 2х-3у+3=2(3х-у)
По плану нужно было выполнять в день 1:12=1/12 часть работы
После 8 дней совместной работы убрано было
8*1/12=8/12=2/3 и осталось убрать 1 -2/3=1/3 часть всей работы.
Вторая бригада закончила 1/3 часть работы за 7 дней.
Следовательно, каждый день она выполняла (1/3):7=1/21 часть работы.
Всю работу вторая бригада могла бы выполнить за 1:1/21=21 день.
Первая выполнила бы всю работу за х дней с производительностью 1/х работы в день.
Разделив всю работу на сумму производительностей каждой бригады получим количество дней, за которую она могла быть выполнена, т.е. 12 дней.
1:(1/21+1/х)=12
12*(1/21+1/х)=1
12/21+12/х=1
9х=252
х=28 ( дней)
ответ: Первая бригада могла бы выполнить работу за 28 дней,
вторая - за 21 день.
Алгебра .ТЕМА.КОНТРОЛЬНАЯ РАБОТА №9
Вариант 1
1. Решите систему уравнений методом подстановки: (4х+у=3 и 6х-2у=1)
2. Решите систему уравнений методом сложения:(3х-2у=3 и 5х+2у=16)
3. Студент получил стипендию 600 руб. купюрами достоинством 50 руб. и 10 руб., всего 24 купюры. Сколько всего было выдано студенту 50-рублевых и 10-рублевых купюр в отдельности?
4. Прямая y=kx+b проходит через точки А(3;8) и В(-4;1). Найдите k и b и запишите уравнение этой прямой.
5. Решите систему уравнений:3-(х-2у)-4у=18 и 2х-3у+3=2(3х-у)
Объяснение: