ответ: окончательным ответом будет (-25x^2-12x+25) / (-25x^2+5x)
Объяснение:
Сначала делаем то, что в скобках, а в скобках определяем главное. Сперва скобки и умножение. Под общий знаменатель, но сначала представим 25x^2-1 как две скобки 5х-1 и 5х+1. Далее из числителя 5х^2+х выносим за скобки х и получится х(5х+1). Разложим второй знаменатель х^3+125=(х+5)(x^2-5х+25). Если заменить знаменатели и числители на полученные выражения, то будут сокращения и получится дробь: 1/(5х-1) * х/(х+5). под общий знаменатель (5х-1)(х+5) так как между дробями УМНОЖЕНИЕ, то в числителе ничего НЕ меняется.
Второй шаг это из полученной выше дроби вычитаем другую дробь.
x\((x+5)*(5x-1)) - (x+5)\(5x^2-x) из знаменателя второй дроби выносим x. далее под общий знаменатель x(x+5)(5x-1) , числитель тогда x^2-(x+5)^2. Далее разложим x+5 и все в квадрате. x^2- x^2-10x-25 (cкобку сразу раскрываем). Сокращаем противоположные слагаемые (это допустим -5фа и 5аф ) выносим "-" перед дробь, потом раскрываем скобки в знаменателе, приводим подобные члены Должно получится: -(10x+25)/(5x^3+24x^-5x)
Это уже ответ полученный из скобок. Эту дробь мы делим на 5x/(x^2+5x). При делении вторая дробь переворачивается и деление становится умножением, поэтому полученную из скобок дробь мы умножаем на (x^2+5x)/5x
(5x^3+24x^-5x) представим как (x^2+5x)(5x-1)
(10x+25) представим как 5(2х+5)
в итоге:
- (5(2х+5))/(x^2+5x)(5x-1) * (x^2+5x)/5x сокращаем х^2+5x и пятерки.
получится: - (2x+5)/(5x-1)*1/x = -(2x+5)/(5x^2-x) - это ответ деления скобки на дробь.
дальше из полученной выше дроби вычитаем (25х+22)/(5-25х)
ответ: окончательным ответом будет (-25x^2-12x+25) / (-25x^2+5x)
Объяснение:
Сначала делаем то, что в скобках, а в скобках определяем главное. Сперва скобки и умножение. Под общий знаменатель, но сначала представим 25x^2-1 как две скобки 5х-1 и 5х+1. Далее из числителя 5х^2+х выносим за скобки х и получится х(5х+1). Разложим второй знаменатель х^3+125=(х+5)(x^2-5х+25). Если заменить знаменатели и числители на полученные выражения, то будут сокращения и получится дробь: 1/(5х-1) * х/(х+5). под общий знаменатель (5х-1)(х+5) так как между дробями УМНОЖЕНИЕ, то в числителе ничего НЕ меняется.
Второй шаг это из полученной выше дроби вычитаем другую дробь.
x\((x+5)*(5x-1)) - (x+5)\(5x^2-x) из знаменателя второй дроби выносим x. далее под общий знаменатель x(x+5)(5x-1) , числитель тогда x^2-(x+5)^2. Далее разложим x+5 и все в квадрате. x^2- x^2-10x-25 (cкобку сразу раскрываем). Сокращаем противоположные слагаемые (это допустим -5фа и 5аф ) выносим "-" перед дробь, потом раскрываем скобки в знаменателе, приводим подобные члены Должно получится: -(10x+25)/(5x^3+24x^-5x)
Это уже ответ полученный из скобок. Эту дробь мы делим на 5x/(x^2+5x). При делении вторая дробь переворачивается и деление становится умножением, поэтому полученную из скобок дробь мы умножаем на (x^2+5x)/5x
(5x^3+24x^-5x) представим как (x^2+5x)(5x-1)
(10x+25) представим как 5(2х+5)
в итоге:
- (5(2х+5))/(x^2+5x)(5x-1) * (x^2+5x)/5x сокращаем х^2+5x и пятерки.
получится: - (2x+5)/(5x-1)*1/x = -(2x+5)/(5x^2-x) - это ответ деления скобки на дробь.
дальше из полученной выше дроби вычитаем (25х+22)/(5-25х)
16(x^2 - 4x + 4) - 64 - 9(y^2 + 6y + 9) + 81 = 161
16(x - 2)^2 - 9(y + 3)^2 = 16
(x - 2)^2 - (y + 3)^2 / (16/9) = 1
Это гипербола с центром A(2; -3) и полуосями a = 1; b = √(16/9) = 4/3
2) y = cos(x + y)
y' = -sin(x + y)*(1 + y') = -sin(x + y) - y'*sin(x + y)
y' + y'*sin(x + y) = -sin(x + y)
y' = - sin(x+y) / (1 + sin(x+y))
3) (1+x^2) dy - 2xy dx = 0
(1+x^2) dy = 2xy dx
dy/y = 2x dx / (1+x^2)
Интегрируем обе части
ln |y| = ln |1+x^2| + ln C
y = C(1 + x^2)
Решаем задачу Коши.
y(-1) = C(1 + (-1)^2) = 2C = 4
C = 2
y = 2(1 + x^2)