Числа x, y, z образуют (в указанном порядке) геометрическую прогрессию; числа x, y+10, z образуют (в указанном порядке) арифметическую прогрессию, а числа x, y+10 и z+80 (в указанном порядке) – также геометрическую прогрессию. Найдите x, y и z.
ответ: 5 ; 15 и 45 или 5/9 ; -25/9 и 125/9 .
Объяснение: * * * x ; x*q ,x*q² , x≠0 * * *
y =x*q ; z =x*q², где q знаменатель геометрической прогрессии
числа x, y+10, z образуют (в указанном порядке) арифметическую прогрессию , значит y+10 =(x+z)/2⇔ 2(y+10) =x+z ⇔(символ эквив)
3) Биссектриса угла делит противоположную сторону на отрезки пропорциональные прилегающим сторонам.
КС/ВК = АС/АВ
18/8=АС/12
АС=(18 х 12) : 8=27
4) BM : MC = 2 : 9, то есть BM = 2x и MC = 9x
Рассмотрим ΔABC и ΔKBM
По условию MK ║ AC ⇒ ∠BKM = ∠A - соответственные углы
∠B - общий ⇒ ΔABC ~ ΔKBM по двум равным углам. ⇒
ответ: AC = 99 см
5) Рассмотрим треугольники ВСО и АОД:
1) угол ВСО = углу АОД (вертикальные углы);
2) угол АДО = углу ОВС (накрест лежащие при параллельных ВС и АД и секущей АД)
Значит треугольник ВСО подобен треугольнику АОД по первому признаку.
Из подобнисти треугольников следует пропорциональность сторон:
ВС/AD = BO/OD
3/5 = х/х-24
72-3х = 5х
-8х = -72
х = 9
ВО = 9 см
ОД = 15 см
* * * * * * * * * * * * * * * * * * * * * *
Числа x, y, z образуют (в указанном порядке) геометрическую прогрессию; числа x, y+10, z образуют (в указанном порядке) арифметическую прогрессию, а числа x, y+10 и z+80 (в указанном порядке) – также геометрическую прогрессию. Найдите x, y и z.
ответ: 5 ; 15 и 45 или 5/9 ; -25/9 и 125/9 .
Объяснение: * * * x ; x*q ,x*q² , x≠0 * * *
y =x*q ; z =x*q², где q знаменатель геометрической прогрессии
числа x, y+10, z образуют (в указанном порядке) арифметическую прогрессию , значит y+10 =(x+z)/2⇔ 2(y+10) =x+z ⇔(символ эквив)
2(x*q+10) = x+x*q²⇔ x+x*q²- 2x*q=20⇔ x*(q-1)² =20 (1)
числа x, y+10 и z+80 (в указанном порядке) – также геометрическую прогрессию,следовательно (y+10)² = x(z+80) ⇔(x*q+10)² = x(xq²+80) ⇔
x²*q²+20x*q+100 = x²q²+80x ⇔20x*q+100 =80x⇔x*q+5 =4x ⇔
x*(4-q) = 5 (2)
первое уравнение (1) разделим на уравнение (2) получаем
x*(q-1)²/ x*(4-q) =20/5 ⇔(q-1)²/ (4-q) =4 ⇔ q²-2q+1 =16 -4q
q²+2q- 1 5 =0 ⇒ q =3 ; q = - 5
a) q = 3 ⇒ x = 5/(4-q) = 5/(4-3) = 5 5 ; 15 ; 45
b) q = - 5 ⇒ x = 5/(4-q) = 5/ (4-(5)) =5/9 5/9 ; -25/9 ; 125/9