Смотрите рисунок. Начнем с того, что раз треугольник остроугольный,то все высоты находятся внутри треугольника,то внутри расположен и сам ортоцентр. Пусть R центр вписанной окружности,тогда он есть пересечение биссектрис. То есть AR и CR биссектрисы углов C и A. Пусть разбитые ими углы равны Альфа и Бетта. А угол B=x. Q-ортоцентр ,то есть AF и CS высоты к сторонам BC и AB.По условию выходит что четырехугольник AQRC вписан в окружность,значит углы: QAR=QCR,как углы опирающиеся на общую дугу QR. Из рисунка видно что: QAR= Бетта -(90-x). CQR=Альфа-(90-2*Бетта). Откуда: Бетта+x=Альфа +2*Бетта x=Aльфа+Бетта. Из того что сумма углов треугольника ABC равна 180 имеем: x+2*Альфа+2*Бетта=180 3x=180 x=60. ответ: x=60
1)10 (км/час) - скорость на велосипеде.
2)8 (см) - длина основания;
10 (см) - длина боковой стороны.
Объяснение:
1. Турист преодолел расстояние в 29 км. 2 часа он ехал на велосипеде,
затем 3 часа шёл пешком. Скорость на велосипеде больше скорости
пешком на 7 км. Найти скорость движения на велосипеде.
х - скорость пешком
х+7 - скорость на велосипеде
3*х - путь пешком
(х+7)*2 - путь на велосипеде
По условию задачи весь путь 29 км, уравнение:
3х+2(х+7)=29
3х+2х+14=29
5х=29-14
5х=15
х=15/5
х=3 (км/час) - скорость пешком
3+7=10 (км/час) - скорость на велосипеде.
2 Периметр равнобедренного треугольника 28 см. Боковая сторона
на 2 см больше основания . Найти стороны РАВНОБЕДРЕННОГО
треугольника.
х - длина основания
х+2 - длина боковой стороны
Периметр треугольника - это сумма длин всех сторон треугольника. Так как треугольник равнобедренный, в нём боковые стороны равны.
По условию задачи периметр треугольника 28 см, уравнение:
х+2(х+2)=28
х+2х+4=28
3х=28-4
3х=24
х=24/3
х=8 (см) - длина основания
8+2=10 (см) - длина боковой стороны.