Условию будут удовлетворять числа: 91, 93, 95, 97, 99 (5 шт.) Вероятность: в) Если х=9, то у=9 Если х=8, то у=9 Получаем числа: 99, 89 (2 шт.) Вероятность: г) Если х=1, то у=1; 3 Если х=2, то у=1 Если х=3, то у=1 Числа: 11, 13, 21, 31 (4 шт.) Вероятность:
Для суммы бесконечно убывающей геометрической прогрессии справедлива формула:
Значит для второй и третьей последовательности (квадратов и кубов) справедливо:
Нам известно, что:
И известно:
Получаем:
Получаем уравнение
Перебором делителей свободного члена находим, что корнем является q = 1 (который, нам, однако, не подходит, поскольку |q| должен быть меньше 1 т.к. прогрессия бесконечно убывает) и поделив на q - 1 получаем:
Находя корни квадратного уравнения, получаем:
Из которых (по причине, описанной ранее) подходит только 1/4.
Дальше из условия находим, что , а третий член равен
11, 13, 15, ..., 99 - двузначные натуральные нечетные
Найдем их общее количество: последовательность является арифметической прогрессией, где:
чисел
а)
Нечетное число:
Числа, удовлетворяющие условию: 11, 13, ..., 31
Их количество:
Вероятность:
б)
Условию будут удовлетворять числа: 91, 93, 95, 97, 99 (5 шт.)
Вероятность:
в)
Если х=9, то у=9
Если х=8, то у=9
Получаем числа: 99, 89 (2 шт.)
Вероятность:
г)
Если х=1, то у=1; 3
Если х=2, то у=1
Если х=3, то у=1
Числа: 11, 13, 21, 31 (4 шт.)
Вероятность:
Для суммы бесконечно убывающей геометрической прогрессии справедлива формула:
Значит для второй и третьей последовательности (квадратов и кубов) справедливо:
Нам известно, что:
И известно:
Получаем:
Получаем уравнение
Перебором делителей свободного члена находим, что корнем является q = 1 (который, нам, однако, не подходит, поскольку |q| должен быть меньше 1 т.к. прогрессия бесконечно убывает) и поделив на q - 1 получаем:
Находя корни квадратного уравнения, получаем:
Из которых (по причине, описанной ранее) подходит только 1/4.
Дальше из условия находим, что , а третий член равен