Графики функций у=kx+l и y=x²+bx+c при k= -3; l= -8; b=7; c=16 пересекаются в точках A(-4; 4) и B(-6; 10).
Объяснение:
у=kx+l y=x²+bx+c A(-4; 4); B(-6; 10)
1)Составим уравнение прямой у=kx+l по формуле:
(х-х₁)/(х₂-х₁) = (у-у₁)/(у₂-у₁)
Значения х и у - координаты точек.
х₁= -4 у₁=4
х₂= -6 у₂=10
Подставляем значения х и у в формулу:
(х-(-4)/(-6)-(-4) = (у-4)/(10-4)
(х+4)/(-2) = (у-4)/6 перемножаем крест-накрест, как в пропорции:
6х+24= -2у+8
2у= -6х+8-24
2у= -6х-16
у= -3х-8, искомое уравнение.
k= -3 l= -8.
2)y=x²+bx+c A(-4; 4); B(-6; 10)
Используя координаты данных точек, составим систему уравнений:
4=(-4)²+b*(-4)+c
10=(-6)²+b*(-6)+c
Произвести необходимые действия:
4=16-4b+c
10=36-6b+c
Выразим с через b в двух уравнениях:
-с=16-4b-4 -с=12-4b
-c=36-6b-10 -c=26-6b
Приравняем правые части уравнений, так как левые равны:
12-4b=26-6b
-4b+6b=26-12
2b=14
b=7
Теперь вычислим с:
-с=12-4b
-с=12-4*7
-с=12-28
-с= -16
с=16
Подставляем полученные значения b и c в уравнение:
у=x²+7x+16, искомое уравнение.
* * * * * * * * * * * * * * * * * * *
ОПРЕДЕЛИ абсциссу вершины параболы, проходящей через точки c координатами (0;−5), (4;9), (−4;−2).
ответ: x₀ ≅ 1,3.
Объяснение: СЛУШАЮ !
y = f(x) =ax² +bx + c
-5 = a*0² +b*0 + c ⇒ c = - 5 ; y = f(x) =ax² +bx - 5
9 =a*4² +b*4 - 5 ; {16a +4b =14 ;
-2 = a*(-4)²+b(-4) -5. {16a -4b = 3 . || a =(3+4b)/16
16a +4b -(16a -4b) = 14 -3 ⇔8b =11 ⇒b =11/8 из 2-го уравнения
a = (3+4b)/16 = (3+4*11/8)/16 = (3+11/2)/16 = 17/32
у = (17/32)x² +(11/8)x - 5
Абсциссу вершины параболы будет :
x₀ = - b/2a = -(11/8) / 2(17/32) = -(11/8) / (17/16) = - (11*16)/(8*17) = -22/17 ≅1,3.
Графики функций у=kx+l и y=x²+bx+c при k= -3; l= -8; b=7; c=16 пересекаются в точках A(-4; 4) и B(-6; 10).
Объяснение:
у=kx+l y=x²+bx+c A(-4; 4); B(-6; 10)
1)Составим уравнение прямой у=kx+l по формуле:
(х-х₁)/(х₂-х₁) = (у-у₁)/(у₂-у₁)
Значения х и у - координаты точек.
х₁= -4 у₁=4
х₂= -6 у₂=10
Подставляем значения х и у в формулу:
(х-(-4)/(-6)-(-4) = (у-4)/(10-4)
(х+4)/(-2) = (у-4)/6 перемножаем крест-накрест, как в пропорции:
6х+24= -2у+8
2у= -6х+8-24
2у= -6х-16
у= -3х-8, искомое уравнение.
k= -3 l= -8.
2)y=x²+bx+c A(-4; 4); B(-6; 10)
Используя координаты данных точек, составим систему уравнений:
4=(-4)²+b*(-4)+c
10=(-6)²+b*(-6)+c
Произвести необходимые действия:
4=16-4b+c
10=36-6b+c
Выразим с через b в двух уравнениях:
-с=16-4b-4 -с=12-4b
-c=36-6b-10 -c=26-6b
Приравняем правые части уравнений, так как левые равны:
12-4b=26-6b
-4b+6b=26-12
2b=14
b=7
Теперь вычислим с:
-с=12-4b
-с=12-4*7
-с=12-28
-с= -16
с=16
Подставляем полученные значения b и c в уравнение:
у=x²+7x+16, искомое уравнение.
* * * * * * * * * * * * * * * * * * *
ОПРЕДЕЛИ абсциссу вершины параболы, проходящей через точки c координатами (0;−5), (4;9), (−4;−2).
ответ: x₀ ≅ 1,3.
Объяснение: СЛУШАЮ !
y = f(x) =ax² +bx + c
-5 = a*0² +b*0 + c ⇒ c = - 5 ; y = f(x) =ax² +bx - 5
9 =a*4² +b*4 - 5 ; {16a +4b =14 ;
-2 = a*(-4)²+b(-4) -5. {16a -4b = 3 . || a =(3+4b)/16
16a +4b -(16a -4b) = 14 -3 ⇔8b =11 ⇒b =11/8 из 2-го уравнения
a = (3+4b)/16 = (3+4*11/8)/16 = (3+11/2)/16 = 17/32
у = (17/32)x² +(11/8)x - 5
Абсциссу вершины параболы будет :
x₀ = - b/2a = -(11/8) / 2(17/32) = -(11/8) / (17/16) = - (11*16)/(8*17) = -22/17 ≅1,3.