Решение: 1) область определения х<>1 2) x=0 y=-3 нулей нет 3) асимптота х=1 наклонная асимптота k=limx->~(x^2-3x+3)/(x^2-x)=limx->~(1-3/x+3/x^2)/(1-1/x)=1 b=limx->~[3-2x]/(x-1)=-2 y=x-2 наклонная асимптота 4) y'=((2x-3)(x-1)-x^2+3x-3)/(x-1)^2=(2x^2-5x+3-x^2+3x-3)/(x-1)^2=(x^2-2x)/(x-1)^2 x=0 x=2 точки экстремума x=2 y=1 точка минимума х=0 у=-3 точка минимума 5)область значения y<=-3 U y>=1 6) y''=(2x-2)(x-1)^2-2(x-1)(x^2-2x))/(x-1)^4=(2(x-1)^2-2(x^2-2x))/(x-1)^3 2x^2+2-4x-2x^2+4x функция не имеет точек перегиба 7)f(-x)=(x^2+3x+3)/(-x-1) функция не обладает свойством четности нечетности.
Перейдем к неравенству для оснований, изменив знак неравенства:
x+a-1 < 2x-|a| - 2
x > a + |a| + 1
Для того, чтобы решение содержало указанный в условии луч, необходимо выполнение следующего неравенства:
a + |a| + 1 <= 2.
Пусть a>=0. тогда
2а<= 1
a прин [0; 1/2].
Пусть a <0
a-a+1<=2
1<=2 - всегда выполняется
Значит ответ: (-беск; 1/2]
2. Найдем производную данной ф-ии:
y' = (3*(x-2) - (3x+5)) / (x-2)^2 = - 11/(x-2)^2
Уравнение касательной:
у = у(х0) + y'(x0)*(x-x0)
Надо найти х0. Воспользуемся координатами точки, заданной в условии, чтобы составить уравнение для х0.
14 = (3х0+5)/(х0-2) + 11(х0+1)/(х0-2)^2
(3х0+5)(х0-2) + 11(х0+1) = 14(х0-2)^2
11x0^2 - 66x0 + 55 = 0
x0^2 - 6x0 + 5 = 0
Корни: 1 и 5.
Значит через заданную точку можно к графику провести две касательных. Напишем их уравнения:
х0 = 1 у(х0) = -8 y'(x0) = -11
у = -8 -11(х-1) = -11х + 3
Пусть х0 = 5 у(х0) = 20/3 y' = -11/9
у = 20/3 -(11/9)(х-5) = (-11/9)х + 115/9.
ответ: у = -11х+3; у = (-11/9)х + 115/9.
3) график - по почте.
1) область определения х<>1
2) x=0 y=-3 нулей нет
3) асимптота х=1
наклонная асимптота
k=limx->~(x^2-3x+3)/(x^2-x)=limx->~(1-3/x+3/x^2)/(1-1/x)=1
b=limx->~[3-2x]/(x-1)=-2
y=x-2 наклонная асимптота
4) y'=((2x-3)(x-1)-x^2+3x-3)/(x-1)^2=(2x^2-5x+3-x^2+3x-3)/(x-1)^2=(x^2-2x)/(x-1)^2
x=0 x=2 точки экстремума
x=2 y=1 точка минимума
х=0 у=-3 точка минимума
5)область значения y<=-3 U y>=1
6) y''=(2x-2)(x-1)^2-2(x-1)(x^2-2x))/(x-1)^4=(2(x-1)^2-2(x^2-2x))/(x-1)^3
2x^2+2-4x-2x^2+4x
функция не имеет точек перегиба
7)f(-x)=(x^2+3x+3)/(-x-1)
функция не обладает свойством четности нечетности.
График :