Система городов а и в, расстояние между которыми 210 км, одновременно выехали навстречу друг другу два автомобиля и встретились через полтора часа. найдите скорость каждого автомобиля, если до встречи первый автомобиль проехал на 30 км больше, чем второй. решение через систему уравнению
Здесь Все под один знак равно:
y = x^2 + 4x - 2
Тогда графиком данной функции будет являться парабола!
Приравниваем к 0 правую часть функции:
x^2 + 4x - 2 = 0
Находим 2 точки параболы: m и n
m = -b дробная черта 2a. ; -4 дроб. черта 2 = -2
n = 4 -8 -2 = -6
Получились 2 точки: A (-2;0) и B (-6;0);
Далее находим центральную точку нашей параболы путем нахождения дискриминанта:
D = (b/2)^2 - ac. ("/"-дробная черта)
D = 4 - 1 (-2)
D = 6
Это примернооо 2,4 квадратный корень.
x1/2 = -b/2 +- корень из D и все разделить на a.
x1/2 = -2 +- 2,4 /// 1 = / x1 = 0,4; x2 = -4.4
Дальше надо начертить систему координат, и расставить эти точки:
A (-2;0); B (-6;0); C (-4,4; 0,4);
Получится парабола!
Объяснение:
1а) x² + x - 20 ≠0
найдем x² + x - 20 = 0
D = 1+80 = 81
x ₁ ₂ = (-1 ±9) / 2
x₁ = -5
x₂ = 4
ОВФ (-∞; -5)∩ (-5;4)∩(4; +∞)
1б) получитсясистема:
{x+9 ≥0 {x≥-9
{4-x ≥0 {x ≤4
ОВФ [-9;4]
2a) f(-x) = -4x⁷ +2x³ = -f(x) нечетная
2б) f(-x) = (-x)² -3(-x)⁴= x² -3x⁴ = f(x) четная
2в) f(-x) = -x³ + (-x)⁶ = -x³ + x⁶ ≠ f(x) ≠ f(x) ни четная, ни нечетная
3) область определения X≥0
а) пересечение с x т. е. y =0 при х = 0 и x = 4 точки (0;0), (4;0)
б) возрастание [0;1]
убывание (1;+∞)
в) ОЗФ, [0.5; +∞)