1) Если требуется найти ВСЕ ОБЩИЕ РЕШЕНИЯ нескольких уравнений, то говорят, что надо решить систему уравнений.
2) Решением системы уравнений с двумя переменными называют ПАРУ ЗНАЧЕНИЙ ПЕРЕМЕННЫХ,ОБРАЩАЮЩУЮ КАЖДОЕ УРАВНЕНИЕ В ВЕРНОЕ РАВЕНСТВО.
3) Решить систему уравнений - это значит НАЙТИ ВСЕ РЕШЕНИЯ ИЛИ ДОКАЗАТЬ,ЧТО РЕШЕНИЙ НЕТ.
4) Суть графического метода решения системы уравнений состоит в следующем:
а) построить на одной координатор плоскости ГРАФИКИ УРАВНЕНИЯ, ВХОДЯЩИЕ В СИСТЕМУ.
б) найти КООРДИНАТЫ ВСЕХ ТОЧЕК ПЕРЕСЕЧЕНИЯ ПОСТРОЕННЫХ ГРАФИКОВ
в) ПОЛУЧЕННЫЕ ПАРЫ ЧИСЕЛ и будут искомыми решениями
5) Если одно из уравнений системы не имеет решений, то вся система РЕШЕНИЙ НЕ ИМЕЕТ.
6) Если каждое уравнение системы линейных уравнений имеет решение и графиком одного из уравнений является вся плоскость, то система имеет БЕСКОНЕЧНО МНОГО РЕШЕНИЙ.
7) Если графиками уравнений, входящих в систему линейных уравнений, являются прямые, то количество решений этой системы зависит от ВЗАИМНОГО РАСПОЛОЖЕНИЯ ДВУХ ПРЯМЫХ НА ПЛОСКОСТИ:
а) если прямые ПЕРЕСЕКАЮТСЯ, то система имеет единственное решение
б) если прямые СОВПАДАЮТ, то система имеет бесконечно много решений
в) если прямые ПАРАЛЛЕЛЬНЫ, то система решений не имеет.
Сөйлем мүшелері – сөздердің мағыналық тұрғыдан өзара тіркесуі нәтижесінде синтаксистік қызметте жұмсалатын сөйлемнің дербес бөлшектері. Сөйлемдегі сөздер бір-бірімен мағыналық байланыста болады, сол байланыс негізінде грамматикалық мағынаға ие болған сөздер, сөз тіркестері сөйлем мүшелері қызметін атқарады. Сөйлем мүшелері қызметінде сөйлемнің дұрыс құрылуының, әр сөздің өз орнында жұмсалуы мен ой желісі, стильдік жағынан нақты болуының орны ерекше. Сөйлем мүшелері үлкен екі топқа бөлінеді:
Тұрлаулы мүшелер сөйлемнің негізгі арқауы саналады, предикативтік қатынас негізінде ең кіші сөйлем ретінде жұмсалып, олардың негізінде тақырып, рема, тіпті есімді, етістікті сөз тіркестері айқындалады.[1]
1) Если требуется найти ВСЕ ОБЩИЕ РЕШЕНИЯ нескольких уравнений, то говорят, что надо решить систему уравнений.
2) Решением системы уравнений с двумя переменными называют ПАРУ ЗНАЧЕНИЙ ПЕРЕМЕННЫХ,ОБРАЩАЮЩУЮ КАЖДОЕ УРАВНЕНИЕ В ВЕРНОЕ РАВЕНСТВО.
3) Решить систему уравнений - это значит НАЙТИ ВСЕ РЕШЕНИЯ ИЛИ ДОКАЗАТЬ,ЧТО РЕШЕНИЙ НЕТ.
4) Суть графического метода решения системы уравнений состоит в следующем:
а) построить на одной координатор плоскости ГРАФИКИ УРАВНЕНИЯ, ВХОДЯЩИЕ В СИСТЕМУ.
б) найти КООРДИНАТЫ ВСЕХ ТОЧЕК ПЕРЕСЕЧЕНИЯ ПОСТРОЕННЫХ ГРАФИКОВ
в) ПОЛУЧЕННЫЕ ПАРЫ ЧИСЕЛ и будут искомыми решениями
5) Если одно из уравнений системы не имеет решений, то вся система РЕШЕНИЙ НЕ ИМЕЕТ.
6) Если каждое уравнение системы линейных уравнений имеет решение и графиком одного из уравнений является вся плоскость, то система имеет БЕСКОНЕЧНО МНОГО РЕШЕНИЙ.
7) Если графиками уравнений, входящих в систему линейных уравнений, являются прямые, то количество решений этой системы зависит от ВЗАИМНОГО РАСПОЛОЖЕНИЯ ДВУХ ПРЯМЫХ НА ПЛОСКОСТИ:
а) если прямые ПЕРЕСЕКАЮТСЯ, то система имеет единственное решение
б) если прямые СОВПАДАЮТ, то система имеет бесконечно много решений
в) если прямые ПАРАЛЛЕЛЬНЫ, то система решений не имеет.
Объяснение:
Объяснение:
Сөйлем мүшелері – сөздердің мағыналық тұрғыдан өзара тіркесуі нәтижесінде синтаксистік қызметте жұмсалатын сөйлемнің дербес бөлшектері. Сөйлемдегі сөздер бір-бірімен мағыналық байланыста болады, сол байланыс негізінде грамматикалық мағынаға ие болған сөздер, сөз тіркестері сөйлем мүшелері қызметін атқарады. Сөйлем мүшелері қызметінде сөйлемнің дұрыс құрылуының, әр сөздің өз орнында жұмсалуы мен ой желісі, стильдік жағынан нақты болуының орны ерекше. Сөйлем мүшелері үлкен екі топқа бөлінеді:
тұрлаулы мүшелер (бастауыш, баяндауыш);
тұрлаусыз мүшелер (анықтауыш, толықтауыш, пысықтауыш).
Тұрлаулы мүшелер сөйлемнің негізгі арқауы саналады, предикативтік қатынас негізінде ең кіші сөйлем ретінде жұмсалып, олардың негізінде тақырып, рема, тіпті есімді, етістікті сөз тіркестері айқындалады.[1]