a₁ = 25 a₂ = -23 - не уд условию (а - натуральное число) Значит, большее из двух чисел равно 25. Тогда меньшее равно 25 - 2 = 23. ответ: 23; 25.
2. Пусть см - одна сторона. Тогда другая равна см. По условию задачи диагональ прямоугольника равна 25 см. Получим уравнение, используя теорему Пифагора:
По обратной теореме Виета:
a₁ + a₂ = 2
a₁*a₂ = -575
a₁ = 25
a₂ = -23 - не уд условию (а - натуральное число)
Значит, большее из двух чисел равно 25.
Тогда меньшее равно 25 - 2 = 23.
ответ: 23; 25.
2. Пусть см - одна сторона. Тогда другая равна см. По условию задачи диагональ прямоугольника равна 25 см. Получим уравнение, используя теорему Пифагора:
По обратной теореме Виета:
x₁ + x₂ = -17
x₁*x₂ = -168
x₁ = 7
x₂ = -24
Значит, одна из сторон равна 7 см.
Тогда другая сторона равна 7 см + 17 см = 24 см.
ответ: 7 см; 24 см.
P = 2(a+b), где a и b - стороны прямоугольника
Формула площади прямоугольника:
S = ab, где a и b - стороны прямоугольника
Составляем систему:
2(a+b) = 26,
ab = 42
a+b = 26/2,
ab = 42
a+b = 13,
ab = 42
a = 13-b,
b(13-b) = 42
Работаем с получившимся квадратным уравнением
b(13-b) = 42
-b^2 + 13b - 42 = 0
b^2 - 13b + 42 = 0
По формуле дискриминанта решаем его, получаем корни b1 = 7, b2 = 6
Подставляем значения b для а:
a = 13-b; a1 = 13 - b1 = 13 - 7 = 6, a2 = 13 - b2 = 13 - 6 =7.
Получается, стороны прямоугольника 6 см и 7 см.